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The National Morbidity, Mortality, and Air Pollution Study: 
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BACKGROUND
Epidemiologic time-series studies conducted in a

number of cities have found, in general, an association
between daily changes in particulate matter (PM) and
daily mortality counts. These studies, which have
raised concerns about public health effects of particu-
late air pollution, have contributed significantly to
decisions about regulating PM in the US. However, sci-
entists have pointed out a number of limitations in
these studies that raise questions about the interpreta-
tion of the results. They have questioned whether PM
actually causes increased mortality, pointing to differ-
ences in results among studies in different locations;
inadequate consideration of other variables, such as
other pollutants, that might account for such an asso-
ciation; and the use of different analytic methods,
yielding different results. Others have also pointed to
the fact that the time-series epidemiologic studies do
not include measurements of each individual’s expo-
sure to air pollutants, and concentration data from
area monitors in the city are used as an approximation
instead. This use of a surrogate may introduce error in
exposure measurement that could account for
observed associations.

Scientists have also suggested that the PM-mortality
association represents premature mortality by only a
few days among those near death. Advancing of death
by only a few days has been referred to as harvesting or
mortality displacement.  If associations between
increased mortality and PM reflect solely short-term
mortality displacement, the daily time-series studies
may be showing an effect of limited public health
impact.

As the US Environmental Protection Agency (EPA)
prepares to reevaluate the ambient air standards for
PM in the US, and as other countries are similarly
reviewing the evidence for associations between PM
and mortality, it is important to understand whether
any observed associations might be accounted for by
other pollutants, whether bias in exposure measure-
ments leads to the association, or whether mortality
displacement underlies the association.

APPROACH
In an effort to address the uncertainties regarding

the association between PM and daily mortality, and to
determine the effects of other pollutants on this asso-
ciation, HEI funded the National Morbidity, Mortality,
and Air Pollution Study (NMMAPS). Dr Jonathan
Samet and his colleagues at Johns Hopkins University,
in collaboration with investigators at Harvard Univer-
sity, conducted this time-series study in large cities
across the US where levels of PM and gaseous pollut-
ants were varied. To conduct such a study and to begin
to address issues of exposure measurement error and
mortality displacement, new analytic methods were
needed. This first report includes 5 separate sections
that describe such methods; a second report will
describe the results from applying these methods.

RESULTS AND IMPLICATIONS

Exposure Measurement Error
Dr Samet and his colleagues have advanced our

understanding of the effects of error in measuring pol-
lution in time-series studies. They use a theoretical
model to test systematically what effect the relation-
ship between personal exposure and ambient expo-
sure might have on the observed increase in mortality
associated with PM. The application of this model for
correction requires using both ambient monitoring
data and some personal exposure measurement data
in the same area. Such availability of both types of data
is currently limited to a few locations. The investiga-
tors were able to apply one such set of personal and
ambient exposure data as an example. The theoretical
and actual analyses generally appear to refute the criti-
cisms that exposure measurement error could explain
the associations between PM and adverse health
effects. The general absence of measured exposure
data, however, precludes making firm conclusions as
to the specific effects of the errors. HEI, EPA, and other
organizations are currently funding research to obtain
more exposure data that should lead to more confi-
dent specific conclusions regarding the effect of any
exposure measurement error.

This Statement, prepared by the Health Effects Institute, summarizes a research project sponsored by HEI since 1996 and conducted by Dr
Jonathan M Samet of Johns Hopkins University School of Public Health, Baltimore MD. The following Research Report contains the detailed Inves-
tigators’ Report, Part I, and the Commentary on Part I prepared by a panel of the Institute’s Health Review Committee.
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Mortality Displacement
The investigators’ examination of the role of mor-

tality displacement using 2 different but related statis-
tical approaches is original and suggests that more
than a short-term displacement of mortality is occur-
ring. It remains unclear, however, which component(s)
of the air pollution mix are actually responsible for any
longer-term effect and, given our inexperience with
the methods that focus on the longer time scales, how
the estimates of effect based on these methods should
be interpreted. Broader application of these methods
and the development of new methods are needed to

understand the public health implications more
clearly.

Multicity Analysis Methods
The analytic methods developed to examine multi-

city mortality are flexible and comprehensive, allowing
a combination of mortality effects across cities and an
exploration of factors that might account for differ-
ences in effects seen among individual cities. These
methods also set the stage for further analyses and for
addressing questions that might follow from initial
results.
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PREFACE

ORIGINS AND OBJECTIVES

In 1996, HEI initiated the National Morbidity, Mortality,
and Air Pollution Study (NMMAPS)*, based on the real-
ization that a national study could address one of the
major questions regarding air pollution and daily mor-
tality: whether particulate air pollution is responsible for
the associations between air pollution and daily mortality
that have been observed in multiple studies, or whether
these associations are due, in part or completely, to other
air pollutants. This realization emerged both from the
experience of the Particle Epidemiology Evaluation Project
(PEEP), funded by HEI from 1994 to 1997, and from an
evaluation of the literature at that point, which largely
included studies of single cities. 

PEEP was designed to (1) address the replicability and
validity of key epidemiologic studies of particulate air
pollution and daily mortality by conducting detailed
reanalyses of selected data sets, and (2) explore in more
extensive data sets some of the larger scientific and public
health issues raised by the findings of these earlier epide-
miologic studies. PEEP investigators, led by Drs Jonathan
Samet and Scott Zeger, successfully replicated the numer-
ical results of the earlier studies, including the previously
reported associations between total suspended particles
(TSP) and daily mortality in Philadelphia (Schwartz and
Dockery 1992). More detailed analysis of the Philadelphia
data led Samet and Zeger to conclude, however, that the
associations with air pollution in that city could not be
attributed to particulate air pollution alone. In its Com-
mentary on the contributions and limitations of PEEP
(Samet et al 1997), the Oversight Committee concluded:
“Although individual air pollutants (TSP, SO2, and ozone)
are associated with increased daily mortality [in Philadel-
phia], the limitations of the … data make it impossible to
establish that particulate air pollution alone is responsible
for the widely observed associations between increased
mortality and air pollution in that city. All we can con-
clude is that it appears to play a role. … Ultimately, it will
require joint analyses of data from multiple cities with dif-
ferent copollutant correlations … to address further the
role of multiple pollutants.”

NMMAPS was also designed to address two additional
issues that complicated interpretation of the results of daily
mortality and air pollution studies considered in PEEP: the
effect of measurement error in exposure estimates on

relative risk estimates, and whether any effect of life-short-
ening (mortality displacement) associated with increased
daily mortality can be removed from estimates of risk asso-
ciated with air pollution. With regard to exposure measure-
ment error,  the Oversight Committee stated in its
Commentary on PEEP that “Errors in exposure measure-
ments as a result of using data provided by centrally
located monitors rather than exposures or doses measured
in individuals, could, in the context of complex multivari-
able models for daily mortality, affect the relative risk esti-
mates in ways that are difficult to predict. The possibility
of such errors are an important source of uncertainty about
the true magnitude of the estimated effects of individual air
pollutants on daily mortality.” For this reason, the Over-
sight Committee recommended “… developing models to
assess exposure measurement errors in daily time-series
analyses, and applying those models to a national data set
using more detailed exposure data, if available.”

The extent of life-span reduction associated with pollu-
tion-related daily mortality in Philadelphia and other
locales remained unclear. If such reductions were small,
due mainly to the advancement of the date of death for
frail individuals by a matter of days (mortality displace-
ment), then the public health implications would be less
profound. The Oversight Committee remarked that “Esti-
mating the extent of life-shortening caused by short-term
elevations in air pollution remains one of the most impor-
tant tasks for future studies.” Developing methods for
addressing the questions of whether any excess daily mor-
tality is associated with air pollution only, or of whether
any association largely reflects short-term mortality dis-
placement, became an important methodologic objective
of NMMAPS.

To address these questions, NMMAPS had the following
two broad objectives:

• To conduct a nationwide study of acute health effects 
of air pollution on morbidity and mortality. NMMAPS 
is based on data from the US national air monitoring 
network provided by the US Environmental Protection 
Agency’s  (EPA’s) Aerometric Information Retrieval 
System (AIRS) database, which contains information 
on particulate matter less that 10 �g in aerodynamic 
diameter (PM10) and other criteria pollutants from 
1987 to 1994, as well as from information on health and 
the population from the National Centers for Health 
Statistics, the Health Care Financing Administration, 
and the US Census.  NMMAPS evaluates two issues: 
(1) air pollution and daily mortality in the 20 and * A list of abbreviations and other terms appears after the Investigators’ Report.



2

Preface to The National Morbidity, Mortality, and Air Pollution Study

90 largest US cities, and; (2) daily hospital admissions 
of the elderly (� 65 years old) in 14 US cities with daily 
measurements of PM10. A combined analysis using 
daily mortality and hospital admissions in the same 
cities is planned.

• To develop the statistical and epidemiologic methods 
required for data analysis and interpretation of results 
from such an investigation. NMMAPS investigators 
have developed methods for combining the evidence 
across multiple locations and for assessing the impact 
of exposure misclassification on the estimated associ-
ation between daily mortality and air pollution. They 
have also developed approaches that begin to answer 
the question of whether or not the excess daily mortal-
ity that has been associated with air pollution reflects 
only, or largely, small reductions in survival among 
frail individuals.

NMMAPS focuses on the acute health effects of particu-
late air pollution, measured as PM10. Its design, however,
was intended by the investigators also to provide a frame-
work for the study of pollutants other than particles. 

PARTICIPANTS AND CONDUCT

NMMAPS has been conducted by a team of investigators
from the Johns Hopkins School of Public Health, led by
Principal Investigator Jonathan Samet and including Drs
Scott Zeger and Francesca Dominici. As discussed above,
Samet and Zeger had conducted PEEP, from which
NMMAPS developed. The Johns Hopkins investigators
were responsible for the design and analysis of the mor-
tality component of NMMAPS. They have worked in col-
laboration with Drs Douglas Dockery and Joel Schwartz of
the Harvard School of Public Health on methods for
addressing mortality displacement and measurement
error. Dockery and Schwartz designed and conducted the
morbidity analyses.

NMMAPS has been overseen by the same Oversight
Committee that worked on PEEP, on HEI’s behalf. This
committee, chaired by Dr Gerald van Belle of the Univer-
sity of Washington, comprises leading experts in epidemi-
ology, biostatistics, pulmonary medicine, and aerometric
measurement. The Oversight Committee was responsible
for working with the investigators to develop, and ulti-
mately to approve the analytic plan that has guided
NMMAPS from its inception.

As the analytic plan for NMMAPS was being developed,
HEI sought the comments of a broad range of scientists and
technical experts from industry, government, and public
interest groups. To provide continuing updates on the

progress of the study to these diverse groups, HEI has orga-
nized regular presentations of interim results at its Annual
Conference (1997 to 1999), a symposium at the Interna-
tional Society for Environmental Epidemiology (Sep-
tember 1999), and briefings for HEI sponsors (July 1997,
February 1998, and December 1998). Besides providing
interested parties with up-to-date information on the
progress of NMMAPS, these events provided HEI, the
Oversight Committee, and the investigators with valuable
comments and suggestions for their work.

REPORT REVIEW

All HEI reports are reviewed by the HEI Health Review
Committee and external reviewers with relevant expertise
as required by the subject matter of the report. NMMAPS
was reviewed by a Panel that included members of the HEI
Health Review Committee as well as several other individ-
uals with expertise relevant to the methods and analyses
in this report. The Panel also wrote the Commentaries for
Part I and Part II of the NMMAPS report with input from
the full HEI Health Review Committee, members of the
NMMAPS Oversight Committee, and the HEI Research
Committee.

STRUCTURE OF THE HEI REPORT

The results of NMMAPS are presented as two reports.
Part I: Methods and Methodologic Issues comprises a col-
lection of methodologic papers on three topics: (1) meas-
urement error in air pollution exposure, (2) mortality
displacement, and (3) methods for combining the evidence
in multiple locations using Bayesian hierarchical models.
Part II: Morbidity, Mortality, and Air Pollution in the
United States presents the results of analyses of daily mor-
tality in the 20 and 90 largest US cities and in hospital
admissions of the elderly (those 65 years old or older) in
14 US cities.
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INVESTIGATORS’ REPORT

The National Morbidity, Mortality, and Air Pollution Study

Part I: Methods and Methodologic Issues

Jonathan M Samet, Francesca Dominici, Scott L Zeger, Joel Schwartz, and Douglas W Dockery

Overview of Study Design and Conclusions

THE NMMAPS PROJECT

The National Morbidity, Mortality, and Air Pollution
Study (NMMAPS)* comprises a comprehensive set of
analyses of air pollution, mortality, and morbidity in a
national sampling frame based on the monitoring informa-
tion maintained in the US Environmental Protection
Agency’s (EPA’s) Aerometric Information Retrieval System
(AIRS). The project is a collaboration between investiga-
tors at Johns Hopkins School of Public Health (Drs Samet,
Zeger, and Dominici) and Harvard School of Public Health
(Drs Dockery and Schwartz). The project’s overall objec-
tives lie in the complementary domains of methods devel-
opment and methods application. This report, the first of
two parts, details the methodologic components of
NMMAPS. Part II provides the substantive findings on air
pollution, mortality, and morbidity (Samet et al 2000).

The objectives for developing specific methodologic
components for NMMAPS are fivefold.

1. To develop semiautomated or automated approaches
for database construction using databases of the EPA,
the National Center for Health Statistics (NCHS), the

Health Care Financing Administration (HCFA), the
Census Bureau, and the National Weather Service;

2. To develop and apply statistical methods for regres-
sion analyses of the multisite data, and to develop
spatial time-series methods to estimate spatial maps
of the relative rates of mortality associated with air
pollution, while accounting, as necessary, for the spa-
tial and temporal correlations in the mortality data;

3. To develop and apply methods that adjust for smooth
trends and seasonality on mortality caused by chang-
ing demographics and health behaviors, influenza
epidemics, and other unidentified factors;

4. To examine the consequences of measurement error in
the exposure variables for assessing pollutant-mortal-
ity associations; and

5. To examine the degree to which pollution-related mor-
tality reduces years of life (mortality displacement).

The objectives for application of methods developed for
NMMAPS are threefold.

1. To assess the relation between air pollution and mor-
tality in the largest US cities monitored for PM10 from
1987 forward;

2. To assess the relation between air pollution and mor-
bidity in selected US cities monitored for PM10 from 1987
forward; and

3. To conduct paired analyses of morbidity and mortality
in the same locations.

The design for NMMAPS builds on prior work supported
by the Health Effects Institute in the Particle Epidemiology
Evaluation Project (PEEP) (Samet et al 1995, 1997). This
project was initiated in 1994 with the objectives of vali-
dating the data and replicating the findings in several of the
time-series studies of air pollution and mortality reported
during the 1990s. In a second phase, PEEP addressed
several methodologic issues. These included selecting the

* A list of abbreviations and other terms appears on page 13.

The National Morbidity, Mortality and Air Pollution Study: Methods and
Methodologic Issues, Part I of Health Effects Institute Research Report
94, includes a Preface, an Investigators’ Report, a Commentary by the
Health Review Committee and an HEI Statement about the research
project. Correspondence concerning the Investigators’ Report may be
addressed to Dr Jonathan M Samet, Department of Epidemiology, Johns
Hopkins School of Public Health, 615 North Wolfe Street, Ste W 6041, Bal-
timore MD 21205-2179.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award R824835
to the Health Effects Institute, it has not been subjected to the Agency’s
peer and administrative review and therefore may not necessarily reflect
the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by
private party institutions, including those that support the Health Effects
Institute; therefore, it may not reflect the views or policies of these parties,
and no endorsement by them should be inferred.
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approach for controlling for potential confounding by
weather (Samet et al 1998) and determining the sensitivity
of findings to model-building strategies (Kelsall et al 1997;
Samet et al 1997).

The present project, NMMAPS, evolved from PEEP. The
objectives encompassed methodologic issues that were
persistent sources of uncertainty in interpreting the epide-
miologic evidence: mortality displacement and exposure
measurement error. The plan for multicity analyses was
prompted by questioning the rationale for the study loca-
tions previously selected and by the prospect of setting
this concern aside with analyses conducted using a
defined sampling frame. Additionally, advances in hard-
ware and software made this type of analysis feasible. The
NMMAPS project was initiated at the end of 1996, as PEEP
was ending.

NMMAPS PART I: METHODS AND 
METHODOLOGIC ISSUES

 The five sections of Part I address the areas of method-
ologic concern to NMMAPS.

• Exposure measurement error (sections 1 and 2) offers
an overall conceptual framework for considering this
methodologic problem and an approach for evaluat-
ing and correcting for bias from measurement error.

• Mortality displacement (sections 3 and 4) offers 2
analytic approaches for assessing the pollution-mor-
tality relationship on different timeframes, including
longer time scales that should be harvesting or mor-
tality displacement–resistant.

• Methods for multicity analyses of air pollution and mor-
tality (section 5), based on a new hierarchical approach
for combining evidence from multiple locations.

The application of this method to the 20 largest cities in
the US is provided only to demonstrate the method. The
Part II report provides findings from detailed analysis of
mortality data from these 20 cities and an exploration of
heterogeneity in the effect of air pollution on mortality
across the largest 90 cities. The second report also pro-
vides findings from analysis of data on hospitalization of
individuals 65 years and older in the files of the HCFA.

EXPOSURE MEASUREMENT ERROR

Observational studies are inherently subject to bias from
misclassification of outcome measures and exposure
variables, whether the exposures are those directly under
investigation or potential confounding or modifying factors.
Although epidemiologic terminology generally refers to

information bias or misclassification, common statistical
parlance is measurement error, a term that has been used
most often in discussing exposure misclassification in time-
series studies of air pollution. This report uses either the
epidemiologic or statistical terminology, as appropriate. In
studies at the individual level, information bias may have
many sources, including faulty recollection of past events
or other misreporting by participants; problems with inter-
viewing techniques or data collection procedures; and inac-
curacy of measuring equipment (such as spirometers to
measure lung function). There is an extensive literature on
information bias in studies conducted at the individual
level. Two reviews of this literature are by Armstrong and
colleagues (1992) and Rothman and Greenland (1998).

Time-series studies of air pollution and mortality and
morbidity are conducted on groups rather than individ-
uals, a design generally termed an ecological study. The
consequences of misclassification in ecological studies
have received less attention because this design is most
commonly used for generating hypotheses rather than
hypothesis testing and risk estimation (Brenner et al 1992;
Rothman and Greenland 1998). Ecological studies, how-
ever, have advantages over individual-level studies with
respect to measurement error.

Consideration of the design assumptions of the time-
series studies indicates the potential for their results to be
affected by information bias. In these studies, measure-
ments of concentrations taken at monitors generally sited
for regulatory purposes are used as surrogates for expo-
sures of those persons within the population at risk for
morbidity or mortality. Even the most basic microenviron-
mental model, however, would show that personal expo-
sures to pollutants such as particles depend on the specific
environments where time is spent, the amount of time
spent in these locations, and the concentrations of pol-
lutant(s) in these environments (National Research
Council [NRC] 1991). We also know that little time is spent
outdoors on average and, consequently, indoor microenvi-
ronments contribute substantially to personal exposure for
some pollutants; exposures indoors from outdoor pollut-
ants that have penetrated into indoor spaces are relevant.

When time-series studies on mortality were reported,
exposure misclassification was offered as a severe limita-
tion in interpreting the observational evidence (Lipfert and
Wyzga 1995, 1997). The potential error from using ambient
concentrations measured for regulatory purposes as a surro-
gate for personal exposure was highlighted. Additionally,
the potential for measurement error to cloud interpretation
of multipollutant regression models was raised because
varying degrees of measurement error for different pollut-
ants might bias effect estimates. In the multipollutant case,
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the consequences for interpreting findings for particulate
matter (PM) indices depend on the relative degrees of mea-
surement error for the pollutants considered in a model and
on the pattern of correlation among the pollutants. The pub-
lications cited here and related discussions of the measure-
ment error problem, although appropriately heightening
awareness of this potential problem in the time-series
studies, were not solidly grounded in statistical and epide-
miologic theory. Because of the intense focus on these prob-
lems at the time NMMAPS was initiated, one of the specific
objectives of the project was to address measurement error
and its consequences in time-series studies of air pollution.
To this end, the NMMAPS investigators, with input from
members of the HEI-appointed Oversight Committee, which
included members of the HEI Research Committee and other
experts, formulated a conceptual framework for the mea-
surement error problem and discussed this framework at a
small workshop held in July 1997. These discussions
evolved into a comprehensive report on measurement
error in time-series studies of air pollution, which appears
as section 1 of this Research Report, “Exposure Measure-
ment Error in Time-Series Studies of Air Pollution.”

Section 1 provides an overview of the main ideas on
exposure measurement error in regression models. There
are 2 types of errors—Berkson and classical—each with
differing implications for interpreting model findings. In
the classical error model, the expectation of the measured
value is the true value, but there is variation—the measure-
ment error—around the true value. In the Berkson error
model, the expectation of the measured values is not the
true value, but the average value of the true values for per-
sons within each stratum of the measured value. The con-
sequences of measurement error in univariate and
multivariate models are also addressed. In the conceptual
framework offered in section 1, 3 components of error are
identified: deviation of individual personal exposure from
the risk-weighted average personal exposure; the differ-
ence between the average personal exposure and the true
ambient level; and the difference between the measured
and the true ambient level. The analysis suggests that the
second component, a classical error, is likely to be the
most important source of bias. This framework can be used
as a basis for adjusting for the consequences of measure-
ment error by using data that provide an estimate of the
bias associated with a particular error component.

This possibility of using data from an exposure assess-
ment study to estimate and adjust for bias from measure-
ment error was illustrated using data of the Particle Total
Exposure Assessment Methodology (PTEAM) study
(Ozkaynak et al 1996). PTEAM involved measurement of
personal exposure to PM10 for 178 residents of Riverside,

California. Ambient concentration data were also available
so that the magnitude of the second component of error
could be estimated. The PTEAM data were then used in a
measurement error correction model with mortality data
for Riverside.

This work on exposure measurement error was extended
in section 2 of this Research Report, “A Measurement Error
Model for Time-Series Studies of Air Pollution and Mor-
tality.” Additional data sets including personal exposure
measurements and ambient concentrations were obtained
from the original investigators. An enhanced 2-stage mea-
surement-error correction model was developed that was a
combination of (1) a Bayesian hierarchical generalized
additive model and errors-in-variables for the mortality-
ambient concentration relationship, and (2) a Berkson
model for the ambient concentration–personal exposure
relationship. This model is also applied as an illustration to
the time series of mortality data from Baltimore.

Together, these 2 sections advance the formulation of the
measurement error problem in time-series studies of air
pollution and offer a measurement error correction model.
These formal analyses of the problem of measurement error
and its implications for interpreting the time-series studies
show that measurement error is not likely to be as severe a
limitation as proposed. In fact, we conclude that the
generic criticism—that measurement errors render the
result of time-series models to be uninterpretable—is incor-
rect. We have identified 3 measurement error components;
our analysis suggests that the largest biases in inferences
about the mortality relative risk occur due to the classical
error component arising from using ambient concentration
to estimate risk-weighted average personal exposures.

The framework guided the development of an approach
for correcting for measurement error. The critical measure-
ment error component can be estimated by comparing
ambient concentrations to measured personal exposures.
Fortunately, some data sets are available that contain the
needed measurements. The hierarchical model proposed
in section 2 offers a statistical tool for correcting for mea-
surement error using data from personal exposure studies.
The utility of this measurement error model is demon-
strated by application to mortality data for Baltimore,
Maryland, in which measurement error tended to blunt the
exposure-response relationship.

Formal conceptualization of the measurement error
problem clarified the data that should be collected for use
in measurement error correction models. We found only
limited data that could be used in the measurement error
model; careful searching uncovered only 5 data sets for
further analysis. Although a number of studies are now in
progress on the relation between personal exposure and
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ambient concentration, most do not have the longitudinal
element needed for measurement error models. The data
requirements of the measurement error models should be
considered when exposure assessment studies are
designed. Our example considered measurement error for
a single pollutant because personal and ambient observa-
tions that covered multiple pollutants were not available.
The methods developed and applied here could extend
naturally to the multipollutant case.

The component of NMMAPS directed at measurement
error was motivated by the need to characterize the conse-
quences of exposure measurement error in time-series
analysis and also to develop a systematic framework for
adjusting for measurement error. The regulations of the
EPA are directed at ambient concentrations and not per-
sonal exposures. The initial finding that the adjusted effect
using the PTEAM data exceeds the estimate based on
ambient monitoring data does not have immediate regula-
tory implications. However, varying degrees of measure-
ment error may contribute to heterogeneity of effects
across cities in the United States. We also need to explore
the relations between ambient concentrations and per-
sonal exposures for groups considered susceptible to par-
ticulate matter.

MORTALITY DISPLACEMENT

The time-series studies of air pollution and mortality
have shown associations between daily death counts, par-
ticularly from cardiac and respiratory causes, and levels of
air pollution on the same or recent days. These associations
have been widely interpreted as reflecting the effect of air
pollution on a group of individuals who have heightened
susceptibility because of their chronic heart or lung
diseases. A simple 2-compartment model that divides the
population into a frail group at risk for dying and the
remaining nonfrail persons can represent this characteriza-
tion of the population. In this simple model, depletion of
the frail pool would reduce the subsequent number of
deaths.

For interpreting the observed associations under the
assumption of a frailty model, an understanding of the
degree of life shortening underlying the associations is
needed. At the extreme, if the effect of air pollution were to
advance the timing of death by only a brief interval, such as
a single day, then the net loss of life would be limited and,
in fact, the time lost might arguably be a time characterized
by a low quality of life for the frail individuals at risk for
dying. The unfortunate term harvesting has been applied to
describe this phenomenon; that is, only extremely frail
individuals die from air pollution, sustaining only a slight
reduction of their life spans (Schimmel and Murawski

1976). To avoid this somewhat objectionable label, the
phrase mortality displacement has also been used and is
the phrase used in this Research Report. This phenomenon
was raised as a limitation of the findings of daily time-
series studies (Lipfert and Wyzga 1995) and was directly
discussed in the Staff Paper on Particulate Matter prepared
by the EPA (1996). The findings of the long-term prospec-
tive cohort studies of air pollution and mortality—the
Harvard Six Cities Study (Dockery et al 1993) and the
American Cancer Society’s Cancer Prevention Study (CPS)
II (Pope et al 1995)—were considered to offer critical evi-
dence counter to the mortality displacement hypothesis.

Other investigators have approached the problem of
mortality displacement. If the association between air pol-
lution and mortality does reflect the existence of a pool of
frail individuals in the population, then episodes of high
pollution that lead to increased mortality might reduce the
size of this pool and subsequent days would then be
expected to show a reduced effect of air pollution. The
occurrence of this phenomenon could be assessed by
testing for interaction between prior high-pollution days
and subsequent pollution exposure on mortality counts;
under the mortality displacement hypothesis, a negative
interaction is predicted. Spix and colleagues (1993) ana-
lyzed the daily time series of deaths in Erfurt in the former
East Germany for the period 1980 to 1988. Weak evidence
for this interaction was found. Drs L Cifuentes and LB Lave
(Carnegie-Mellon University, Pittsburgh PA, unpublished
data, 1996) also assumed a frailty model and proposed that
episodes of air pollution involving a high level of pollution
followed by a low level would have a profile of mortality
that was initially high and was then below expectation
because of the depletion of susceptible individuals. They
also found evidence for mortality displacement, applying
this approach to data for Philadelphia for 1983 to 1988.
Spix and colleagues (1993) proposed a 1-step Markov chain
model and demonstrated that the pollution relative risk
estimates from Poisson regression are biased about 10% to
30% by mortality displacement. Smith and colleagues
(1997) used a 2-compartment model with the additional
assumption that both the risk of becoming frail and the risk
of death may depend on air pollution.

To date, these methods have had limited application and
the degree of mortality displacement in the effects esti-
mated in the daily time-series studies remains unresolved.
In NMMAPS, a conceptually different approach that uses
the daily time-series data to assess associations on short
and long time scales was proposed. Two closely related
methods for analysis of daily time-series data were devel-
oped, both testing for air pollution–mortality associations
on varying time scales. The approaches are unified by the
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underlying concept that mortality displacement should
introduce association on shorter time scales while longer
time scales should be mortality-displacement–resistant. In
section 3, “Mortality Displacement–Resistant Estimates of
Air Pollution Effects on Mortality,” Zeger and colleagues
conducted a simulation study using 3 time series of mor-
tality generated with differing underlying assumptions
about the length of residence time spent in the frail state—
3, 30, and 300 days—but assuming the same relative risk
from pollution. The correlation between the number of
deaths and the particle index became nonnegligible only at
time scales less than about twice the mean residence time.
Thus, mortality displacement introduces association
between mortality and pollution only at shorter time
scales.

In the approach developed by Zeger, Dominici, and
Samet and described in section 3, frequency domain log-
linear regression (Kelsall et al 1997) was used to decompose
the information about the pollution-mortality association
into distinct time scales. This technique, developed and
applied to air pollution and mortality as a part of PEEP,
decomposes the air pollution series and the mortality series
into distinct component series so that associations between
pollution and mortality can be calculated for each time
scale. Under the mortality displacement hypothesis, we
expect to find an association only on short time scales if
mortality displacement is the only cause of the pollution-
mortality association.

As described in section 4, “Mortality Displacement and
Long-Term Exposure Effects Related to Air Pollution and
Mortality,” Schwartz used Cleveland’s STL (seasonal and
trend decomposition using LOESS [locally weighted
smoother]) filtering algorithm to separate the time series of
daily deaths, air pollution, and weather into long wave-
length components, midscale components, and residual
very short time scale components. Associations in the long
wavelength components of the data were assumed to repre-
sent effects of time trends and seasonal fluctuations, and
short-term components were assumed to reflect short-term
mortality displacement. The long-term component was set
aside by using a LOESS smooth, a weighted moving regres-
sion, with a window of 120 days. The remaining, midscale
information was used to assess the association between air
pollution and mortality without confounding from longer-
term effects or liability to detecting mortality displacement.
The midscale components were examined with smoothing
windows of 15, 30, 45, and 60 days.

In this report, the 2 methods have the same underlying
analytic principle: decomposition of the daily time-series
data into its shorter- and longer-term components. Zeger
and colleagues (section 3) apply frequency domain

regression to data for Philadelphia, 1974–1988, while
Schwartz (section 4) uses data for Boston, 1979–1986.
These new methods complement prior approaches. In this
report, we present these methods and illustrate their
application.

In NMMAPS, we have developed 2 conceptually sim-
ilar, albeit computationally distinct, approaches for testing
for effects of air pollution on mortality on time scales not
affected by mortality displacement. Zeger and colleagues
show, using a simulated example involving a simple
2-compartment frailty state model, that mortality displace-
ment does not produce associations on time scales longer
than about twice the mean residence time in the frail pool.
Consequently, effects of air pollution on mortality that are
demonstrated on longer time scales should not reflect
mortality displacement alone. The frequency domain
regression approach used by Zeger and colleagues
involves a continuous decomposition of the data into dis-
tinct time axes. Schwartz uses a filtering algorithm, the
STL algorithm, to separate the time-series information into
long, mid, and very short time-scale components.

The two methods are closely related. The Zeger and
colleagues method gives a continuous smooth estimate of
relative risk as a function of time scale. It can be averaged
over distinct ranges of the time-scale to produce the long,
mid, and short time-scale components used by Schwartz.
Alternately, Zeger and colleagues’ relative risk function
can be averaged over a predetermined range of longer time
scales, omitting the shorter scales where mortality
displacement will create associations, to obtain the dis-
placement-resistant estimator of pollution effects. The
Schwartz approach has the advantage of being easy to
implement with standard software. Both of the approaches
discussed here are distinct from the approaches of Spix
and associates (1993) and Smith and coworkers (1997),
who attempt to make inferences about the size of the frail
population using parametric latent variable models.

Zeger and colleagues apply their method to the previ-
ously analyzed data for Philadelphia, 1973 to 1988 (Samet
et al 1997). They implement frequency-domain linear
regression, while adjusting for temperature and dew point
and longer-term trends following the approach of the earlier
analysis. In the Philadelphia data, they find little evidence
for mortality displacement in assessing the effect of particu-
late matter less than 10 �g in aerodynamic diameter (PM10).
In fact, the association is present on longer time scales and
tends to diminish at the shorter time scales on which mor-
tality displacement would operate.

In section 4, Schwartz applies his method to data for the
city of Boston from 1979 to 1986. The pattern of midscale
associations varied by cause of death. The pattern of variation
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of the 4 estimates of risk at the various smoothing frequencies
was taken as an indication of the presence of mortality dis-
placement. An effect that diminished from the shorter-term
to the longer-term scales was interpreted as evidence for mor-
tality displacement, while persistent or increasing effects at
the longer-term scales were interpreted as an effect beyond
mortality displacement. The pattern for chronic obstructive
pulmonary disease (COPD) was consistent with mortality
displacement; the pattern for pneumonia was consistent with
both some mortality displacement and a longer-term effect;
and the patterns for ischemic heart disease and total mor-
tality were consistent with longer-term effects without evi-
dence for mortality displacement. The equivalent pattern for
total mortality was observed with frequency domain regres-
sion in the analysis of Philadelphia data reported in section 3.

These 2 sections demonstrate analytic methods that can
be used to detect the presence of mortality displacement
and to gauge the extent to which associations found with
conventional time-series methods reflect mortality dis-
placement versus longer-term effects. Evidence was found
in Philadelphia and in Boston that associations of particle
indices with mortality did not represent mortality dis-
placement alone. The next steps include applying these
methods to other locations and developing a 2-stage analog
of frequency domain regression to assess mortality dis-
placement more powerfully by combining evidence from
multiple locations. Additionally, more formal compari-
sons of the two methods described in this report, to each
other and to other approaches, are needed to determine the
most informative approaches for assessing mortality dis-
placement.

MULTICITY MODELS: COMBINING EVIDENCE FROM 
MULTIPLE LOCATIONS

The evidence on particulate air pollution and mortality
that initially renewed public health concern about the
adverse health effects of air pollution came from time-series
analyses of data from single cities. The locations had been
selected primarily on the basis of historical precedent as in
London (Schwartz and Marcus 1990), data availability as in
Philadelphia (Schwartz and Dockery 1992), or pollution or
source characteristics as in Santa Clara (Fairley 1990). The
generality of evidence from these locations was uncertain,
but subsequent studies were consistent with the initial
reports in spite of variation in the methods of the studies
(Dockery and Pope 1994). Little evidence of heterogeneity
was found with meta-analysis of effect estimates in studies
published through 1994 (Dockery and Pope 1994; Schwartz
1994), and summary estimates for the effect of particulate
matter on mortality were statistically significant. Nonethe-
less, critics continued to question the interpretation that

this evidence was indicative of an effect of particles specif-
ically rather than of air pollution generally (Moolgavkar and
Luebeck 1996; McClellan 1997).

Concern about the representative nature of findings in
particular locations can be addressed by selecting multiple
study locations from a defined sampling frame. This
approach was followed in NMMAPS, which used all cities
in the United States with PM10 monitors as the sampling
frame. This design set aside concern as to the representa-
tive nature of the study locations. The design also brought
heterogeneity in the levels of pollutants other than PM10
and thereby facilitated exploration of the independence of
the PM10 effect.

This approach was anticipated in the multicenter Euro-
pean study, Air Pollution and Health: A European Ap-
proach (APHEA) (Katsouyanni et al 1997; Touloumi et al
1997). In APHEA, 12 cities were selected from both western
and central Europe, although not on a systematic basis. Data
on particulate air pollution and daily mortality were ana-
lyzed according to a standardized protocol. Model estimates
from the individual cities were pooled as the weighted
means of the regression coefficients, and heterogeneity
among cities was explored using a random effects model.

In NMMAPS, we developed hierarchical regression
models for combining estimates of the pollution-mortality
relation across cities. The analysis proceeded in 2 stages.
Given a time series of daily mortality counts in each of
3 age groups, we used generalized additive models (Hastie
and Tibshirani 1990) to estimate the relative change in the
rate of mortality associated with changes in the air pollu-
tion variables, controlling for age-specific longer-term
trends, weather, and other potential confounding factors,
separately for each city. We then combined the pollution
mortality relative rates across the cities using a Bayesian
hierarchical model (Lindley and Smith 1972; Morris and
Normand 1992). This approach allowed us to obtain an
overall estimate and to explore whether some of the
geographic variation can be explained by site-specific
explanatory variables.

In section 5, “Combining Evidence on Air Pollution and
Daily Mortality from Twenty Largest US Cities,” we offer a
comprehensive description of the analytic approach and
demonstrate its application. NMMAPS Part II will provide
the findings from the proposed sampling frame of 90 cities.

CONCLUSIONS

NMMAPS represents a comprehensive research program
on time-series analysis of data on air pollution and mor-
bidity and mortality. Its elements include the development
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of a conceptual framework for the problem of measurement
error and of a related measurement error correction model,
consideration of informative analytic approaches to
assessing the extent of mortality displacement, and the
development of analytic methods for carrying out multicity
analyses. These elements are the subject of this report; the
second report will cover the multicity morbidity analyses.

To summarize briefly, the evaluation of measurement
error and its consequences shows that the critical compo-
nent of error would tend to blunt effects; if appropriate
personal exposure data are available, a correction for bias
can be made. Two conceptually linked methods for
addressing mortality displacement were developed and
applied. Findings in Philadelphia and Boston indicated
associations on longer, mortality displacement–resistant
time scales. A new method for multicity analysis was
developed and its potential shown by analysis of data for
20 US cities.

The findings in this report indicate a number of informa-
tive applications and extensions of the NMMAPS method-
ology:

• optimization of the design of exposure assessment 
studies for measurement error correction;

• application of the frequency domain regression 
method and the STL algorithms to data from addi-
tional cities; and

• periodic multicity analyses for surveillance of chang-
ing effects of air pollution.

REFERENCES

Armstrong BK, Saracci R, White E. 1992. Principles of
Exposure Measurement in Epidemiology. Oxford Univer-
sity Press, New York NY.

Brenner H, Savitz DA, Jockel KH, Greenland S. 1992. The
effects of nondifferential exposure misclassification in
ecological studies. Am J Epidemiol 135:85–95.

Dockery DW, Pope CA III. 1994. Acute respiratory effects
of particulate air pollution. Annu Rev Public Health
15:107–132.

Dockery DW, Pope CA III, Xu X, Spengler JD, Ware JH, Fay
ME, Ferris BG Jr, Speizer FE. 1993. An association between
air pollution and mortality in six US cities. N Engl J Med
329:1753–1759.

Fairley D. 1990. The relationship of daily mortality to sus-
pended particulates in Santa Clara County, 1980–1986.
Environ Health Perspect 89:159–168.

Hastie TJ, Tibshirani RJ, eds. 1990. Generalized Additive
Models. Chapman & Hall, New York NY.

Katsouyanni K, Touloumi G, Spix C, Schwartz J, Balducci
F, Medina S, Rossi G, Wojtyniak B, Sunyer J, Bacharova L,
Schouten JP, Ponka A, Anderson HR. 1997. Short-term
effects of ambient sulphur dioxide and particulate matter
on mortality in 12 European cities: Results from the
APHEA project. Br Med J 314:1658–1663.

Kelsall JE, Samet JM, Zeger SL, Xu J. 1997. Air pollution
and mortality in Philadelphia, 1974–1988. Am J Epidemiol
146:750–762.

Lindley DV, Smith AFM. 1972. Bayes estimates for the
linear model (with discussion). J R Stat Soc 34:1–41.

Lipfert FW, Wyzga RE. 1995. Air pollution and mortality:
Issues and uncertainties. J Air Waste Manage Assoc
45:949–966.

Lipfert FW, Wyzga RE. 1997. Air pollution and mortality:
The implications of uncertainties in regression modeling
and exposure measurement. J Air Waste Manage Assoc
47:517–523.

McClellan RO, Miller FJ. 1997. An overview of EPA’s pro-
posed revision of the particulate matter standard. CIIT
Activities 17:1–24.

Moolgavkar SH, Luebeck EG. 1996. A critical review of the
evidence on particulate air pollution and mortality. Epide-
miology 7:420–428.

Morris CN, Normand S-L. 1992. Hierarchical models for
combining information and for meta-analysis. In: Bayesian
Statistics 4. Proceedings of the Fourth Valencia Interna-
tional Meeting (Bernardo JM, Berger JO, Dawid AP, Smith
AFM, eds). Oxford University Press, Oxford, England.

National Research Council. 1991. Committee on Advances
in Assessing Human Exposure to Airborne Pollutants.
Human Exposure Assessment for Airborne Pollutants:
Advances and Opportunities. National Academy Press,
Washington DC.

Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jen-
kins P. 1996. Personal exposure to airborne particles and
metals: Results from the Particle TEAM Study in River-
side, California. J Expo Anal Environ Epidemiol 6:57–78.

Pope CA, III, Thun MJ, Namboodiri MM, Dockery DW,
Evans JS, Speizer FE, Heath CW Jr. 1995. Particulate air
pollution as a predictor of mortality in a prospective study
of US adults. Am J Respir Crit Care Med 151:669–674.



12

NMMAPS I: Overview

Rothman KJ, Greenland S. 1998. Modern Epidemiology,
2nd ed. Lippincott-Raven, Philadelphia PA.

Samet JM, Zeger S, Dominici F, Curriero F, Coursac I,
Dockery D, Schwartz J, Zanobetti A. 2000. The National
Morbidity and Mortality Air Pollution Study. Part II. Mor-
bidity and Mortality from Air Pollution in the United States.
Research Report 94. Health Effects Institute, Cambridge MA.

Samet JM, Zeger S, Kelsall JE, Xu J, Kalkstein LS. 1998.
Does weather confound or modify the association of par-
ticulate air pollution with mortality? An analysis of the
Philadelphia data, 1973–1980. Environ Res 77:9–19.

Samet JM, Zeger SL, Berhane K. 1995. The association of
mortality and particulate air pollution. In: Particulate Air
Pollution and Daily Mortality: Replication and Validation
of Selected Studies, The Phase I.A Report of the Particle
Epidemiology Evaluation Project. Health Effects Institute,
Cambridge MA.

Samet JM, Zeger SL, Kelsall JE, Xu J, Kalkstein LS. 1997.
Air pollution, weather, and mortality in Philadelphia
1973–1988. In: Particulate Air Pollution and Daily Mor-
tality: Analyses of the Effects of Weather and Multiple Pol-
lutants. The Phase I.B Report of the Particle Epidemiology
Evaluation Project. Health Effects Institute, Cambridge
MA.

Schimmel H, Murawski TJ. 1976. The relation of air pollu-
tion to mortality. J Occup Med 18:316–333.

Schwartz J. 1994. Air pollution and daily mortality: A
review and meta-analysis. Environ Res 64:36–52.

Schwartz J, Dockery DW. 1992. Increased mortality in Phil-
adelphia associated with daily air pollution concentra-
tions. Am Rev Respir Dis 145:600–604.

Schwartz J, Marcus A. 1990. Mortality and air pollution in
London: A time-series analysis. Am J Epidemiol 131:185–
194.

Smith L, Davis J, Sacks J, Speckman P, Styer P. 1997.
Assessing the human health risk of atmospheric particles.
In: Statistics and the Environment. Proceedings from the
1997 Joint Statistical Meetings, Anaheim CA. American
Statistical Association, Alexandria VA.

Spix C, Heinrich J, Dockery DW, Schwartz J, Volksch G,
Schwinkowski K, Collen C, Wichmann HE. 1993. Air pol-
lution and daily mortality in Erfurt, East Germany, 1980–
1989. Environ Health Perspect 101:518–526.

Touloumi G, Katsouyanni K, Zmirou D, Schwartz J, Spix C,
Ponce de Leon A, Tobias A, Quenel P, Rabczenko D,

Bacharova L, Bisanti L, Vonk JM, Ponka A. 1997. Short-
term effects of ambient oxidant exposure on mortality: A
combined analysis within the APHEA project. Am J Epide-
miol 146:177–185.

US Environmental Protection Agency. 1996. Review of the
National Ambient Air Quality Standards for Particulate
Matter: Policy Assessment of Scientific and Technical
Information. OAQPS Staff Paper. EPA-452\R-96-013.
Office of Air Quality Planning and Standards, Research
Triangle Park NC.

Zeger SL, Dominici F, Samet J. 1999. Harvesting-resistant
estimates of air pollution effects on mortality. Epidemi-
ology 10:171–175.

ABOUT THE PRIMARY AUTHORS

Jonathan M Samet is Professor and Chairman of the
Department of Epidemiology at Johns Hopkins School of
Public Health. He received his medical degree from the
University of Rochester School of Medicine and Dentistry
and a master’s degree in epidemiology from Harvard
School of Public Health. His research has focused on the
effects of environmental and occupational agents. He is
chairman of the NRC’s Committee on Research Priorities
for Airborne Particulate Matter and was chairman of the
NRC’s Committee on Health Risk of Exposure to Radon
(BEIR VI).

Francesca Dominici, Assistant Professor of Biostatistics at
the Johns Hopkins School of Public Health, received her
doctoral degree from the University of Padua. Her research
interests include time-series analysis in environmental
epidemiology, semiparametric Bayesian models for dose-
response data, hierarchical models for combining informa-
tion and for meta-analysis, and missing data. She is the
first recipient of the Walter A Rosenblith New Investigator
Award from the Health Effects Institute. Her work on air
pollution and mortality was recently honored by an invita-
tion to read her paper on this topic to the Royal Statistical
Society in London.

Scott L Zeger is Professor and Chairman of the Department
of Biostatistics at Johns Hopkins School of Public Health.
He earned his doctorate in statistics from Princeton Univer-
sity. With Kung-Yee Liang, he developed the generalized
estimating equation (GEE) approach to regression modeling
with correlated data as occur in time-series or longitudinal
studies. This work has been recognized with awards from
both the American Statistical Association and American
Public Health Association. Zeger’s current research focuses



 13

JM Samet et al

on improving the design and analysis of data from prospec-
tive studies.

Joel Schwartz, Associate Professor of Environmental Epi-
demiology at Harvard School of Public Health and Harvard
Medical School, received his doctorate from Brandeis Uni-
versity in theoretical physics and is a MacArthur Fellow.
Schwartz has held appointments as a visiting scientist at
the University of Basel, Switzerland, and at the University
of Wupperal, Germany, and has served as a Senior Scien-
tist at the US EPA. His research focuses on the health
effects of air and water pollution, lead, and methodologic
questions regarding the modeling of covariates in epidemi-
ologic studies. Over the past decade, his studies have been
instrumental in precipitating renewed interest in airborne
particles.

Douglas W Dockery is Professor of Environmental Epide-
miology at Harvard School of Public Health and Professor
of Epidemiology at Harvard Medical School. He received
his master’s degree in meteorology from the Massachusetts
Institute of Technology and his doctorate from Harvard
School of Public Health in environmental health sciences.
His research interests focus on the health effects of air pol-
lution, asthma, lead toxicity, and water quality. He is cur-
rent ly president  of  the International  Society of
Environmental Epidemiology.

PUBLICATIONS RESULTING FROM THIS 
RESEARCH

Dominici F, Samet J, Xu J, Zeger S. 2000. Combining evi-
dence on air pollution and daily mortality from the 20
largest US cities: A hierachical modeling strategy. J R Stat
Soc, Series C. In press.

Dominici F, Zeger SL, Samet JM. 2000. A measurement
error model for time-series studies of air pollution and
mortality. Biostatistics. In press.

Kelsall JE, Samet JM, Zeger SL, Xu J. 1997. Air pollution
and mortality in Philadelphia, 1974–1988. Am J Epidemiol
146:750–762.

Kelsall J, Zeger S, Samet J. 1999. Frequency domain log-
linear models: Air pollution and mortality. Appl Stat 48 (Pt
3):331–334.

Samet JM, Zeger SL, Kelsall JE, Xu J. 1998. Particulate air
pollution and mortality: The Particle Epidemiology Evalu-
ation Project. Appl Occup Environ Hyg 13:364–369.

Samet JM, Zeger SL, Kelsall JE, Xu J, Kalkstein LS. 1998.
Does weather confound or modify association of particulate

air pollution with mortality? An analysis of the Philadel-
phia data, 1973–1980. Environ Res 77:9–19.

Samet JM, Zeger S, Dominici F, Curriero F, Coursac I,
Dockery D, Schwartz J, Zanobetti A. 2000. The National
Morbidity and Mortality Air Pollution Study. Part II. Mor-
bidity and Mortality from Air Pollution in the United
States. Research Report 94. Health Effects Institute, Cam-
bridge MA.

Schwartz J. 2000. Harvesting and long-term exposure
effects in the relationship between air pollution and mor-
tality. Am J Epidemiol 151:440–448.

Zeger S, Thomas D, Dominici F, Cohen A, Schwartz J,
Dockery D, Samet J. 2000. Exposure measurement error in
time-series studies of air pollution: Concepts and conse-
quences. Environ Health Perspect. In press.

Zeger SL, Dominici F, Samet J. 1999. Harvesting-resistant
estimates of air pollution effects on mortality. Epidemi-
ology 10:171–175.

ABBREVIATIONS AND OTHER TERMS

AIRS Aerometric Information Retrieval System

APHEA Air Pollution and Health: A European 
Approach

CI confidence interval

CO carbon monoxide

CM coarse mass

CODA Convergence Diagnostics and Output Anal-
ysis (software)

COPD chronic obstructive pulmonary disease

df degrees of freedom

EPA US Environmental Protection Agency

FDLLR frequency domain log-linear regression

HCFA Health Care Financing Administration

ICD-9 International Classification of Diseases, 
Ninth Revision

IHD ischemic heart disease

IQR interquartile range

LOESS locally weighted smoother 

NMMAPS National Morbidity, Mortality, and Air 
Pollution Study

MCMC Markov chain Monte Carlo

MRT mean residence time

NAAQS National Ambient Air Quality Standard



14

NMMAPS I: Overview

NCHS National Center for Health Statistics

NETH-A Netherlands study of adults 

NETH-C Netherlands study of children

NO2 nitrogen dioxide

NRC National Research Council

O3 ozone

PEEP Particle Epidemiology Evaluation Project

PM particulate matter

PM2.5 particulate matter less than 2.5 µm in 
aerodynamic diameter

PM10 particulate matter less than 10 µm in 
aerodynamic diameter

PTEAM Particle Total Exposure Assessment 
Methodology (study)

SO2 sulfur dioxide

STL seasonal and trend decomposition using 
LOESS

THEES Total Human Environmental Exposure 
Study

TSP total suspended particles



Health Effects Institute Research Report 94, Part I © 2000 15

Section 1: Exposure Measurement Error in Time-Series Studies 
of Air Pollution

Scott L Zeger, Duncan Thomas, Francesca Dominici, Jonathan M Samet, Joel Schwartz, 
Douglas W Dockery, and Aaron Cohen

ABSTRACT

Misclassification of exposure has long been recognized
as an inherent limitation of epidemiologic studies of the
environment and disease. For many agents of interest,
exposures take place over time and in multiple locations;
accurately estimating the relevant exposures for an indi-
vidual participant in epidemiologic studies is often
daunting, particularly within the limits set by feasibility,
participant burden, and cost. The problem of measurement
error is well recognized, and researchers have taken steps
to deal with its consequences by limiting the degree of
error through the design of a study, estimating the degree
of error using a nested validation study, and making
adjustments for measurement error in statistical analyses.

Section 1 sets out a systematic conceptual formulation
of the problem of measurement error in epidemiologic
studies of air pollution and considers the consequences of
measurement error within this formulation. When pos-
sible, available data were used to make simple estimates of
measurement error effects.

The introduction to section 1 presents an overview of the
main ideas on measurement errors in linear regression,  dis-
tinguishing 2 extremes of a continuum: Berkson from
classical type errors, and the univariate predictor from the
multivariate predictor case. We then propose a single con-
ceptual framework for evaluation of measurement errors in
the log-linear regression used for time-series studies of
particulate air pollution and mortality, identifying 3 main
components of error. We also present new simple analyses of

data on exposures of particulate matter less than 10 µm in
aerodynamic diameter (PM10)* from the Particle Total Expo-
sure Assessment Methodology (PTEAM) study  (Ozkaynak et
al 1996). Finally, we summarize open questions regarding
measurement error and suggest the kind of additional data
necessary to address them.

INTRODUCTION

Misclassification of exposure has long been recognized
as an inherent limitation of epidemiologic studies of the
environment and disease (Armstrong et al 1992). For many
agents of interest, exposures take place over time and in
multiple locations so that it is difficult to estimate
accurately the relevant exposures for individual study par-
ticipants, particularly within the limits set by feasibility,
participant burden, and cost. In general, exposure
measurement error tends to blunt the sensitivity of epide-
miologic studies for detecting effects of environmental
agents. The specific impact of exposure error on effect
estimates depends on several factors including the study
design, the types of error, and the relationships between
outcome and independent variables (Armstrong et al 1992;
Thomas et al 1993). As the problem of exposure error has
become recognized, researchers have taken steps to control
its consequences by limiting the degree of error through
careful study design and data collection, by estimating the
degree of error using a nested validation study, and by
making adjustments for measurement error in statistical
analyses.

This section addresses the problem of exposure error in
observational, ecological time-series studies of air pollu-
tion and health. Pollution of outdoor air is a public health
concern throughout the world. For decades, epidemiologic
studies have been a cornerstone to investigating the health
effects of air pollution and have been a principal basis for
setting regulations to protect the public against adverse
health effects. The 2 broad types of observational study
designs are ecological or aggregate-level studies (either
cross-sectional or time-series design) and individual-level
studies (primarily cross-sectional or cohort designs). In

The National Morbidity, Mortality and Air Pollution Study: Methods and
Methodologic Issues, Part I of Health Effects Institute Research Report 94,
includes an Investigators’ Report, a Preface, a Commentary by the Health
Review Committee, and an HEI Statement about the research project. Corre-
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States Environmental Protection Agency under Assistance Award R824835
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ecological studies, population-level indicators of exposure
are typically drawn from centrally sited air pollution
monitors. In individual-level cross-sectional and cohort
studies, exposure estimates for individual participants may
be based on centrally located monitors, on a combination
of central monitors with personal records of environments
where participants spend time, or on personal exposure
monitoring (National Research Council [NRC] 1991).

Regardless of study design, any pollution exposure
assessment strategy introduces some degree of exposure
measurement error. For example, in the Harvard Six Cities
study, a prospective cohort assessment of air pollution and
respiratory health and mortality, exposure estimates for
persons from each of the 6 cities were based on centrally
sited monitors (Ferris et al 1979; Dockery et al 1993). Expo-
sures were further characterized for samples of partici-
pants by using personal monitors and monitors placed in
their homes; the resulting data provide an understanding
of the components of error associated with using central
site data for all participants.

The problem of measurement errors in predictor vari-
ables in regression analysis has been carefully studied in
the statistics and epidemiologic literature for several
decades. Fuller (1987) summarizes early research on linear
regression with “errors-in-x” variables. Carroll and col-
leagues (1995) extend this literature to generalized linear
models including Poisson, logistic, and survival regression
analyses. Thomas and colleagues (1993) present an over-
view of the exposure error or “misclassification problem”
from the general epidemiologic perspective. For recent
illustrations of statistical approaches to measurement error
in epidemiologic research, see Spiegelman and colleagues
(1997), Willett (1998), and Pierce and colleagues (1990).

In one of the early papers on exposure error in studies of
air pollution, Shy and colleagues (1978) described the
problem and addressed its consequences in an epidemio-
logic framework. Goldstein and Landovitz (1997a,b) recog-
nized that a single monitoring station may not represent a
geographic area adequately and conducted an analysis of
correlations among concentration data from several moni-
tors in New York. In the ensuing decades, there has been a
deepening understanding of measurement error in general
and its potential implications specifically for the study of
air pollution (NRC 1985; Navidi et al 1994).

During the 1990s, substantial new evidence—largely
from ecologic, time-series analyses of air pollution and
mortality—showed that daily variation in ambient mea-
sures of particulate air pollution, within current standards
of the US Environmental Protection Agency (EPA), was
associated with daily mortality levels (Dockery and Pope
1994). Strong concerns have been raised about interpreting

these associations in view of potential errors in the expo-
sure measurements. In a series of papers, Lipfert (1997a,b)
and Lipfert and Wyzga (1997) have suggested that the cen-
tral monitoring data used in the time-series analyses have
an uncertain relationship with exposures of individuals in
the study communities; they have further argued that
those errors vary among pollutants, complicating interpre-
tation of any multipollutant models. Lipfert and Wyzga
have referred specifically to an analysis by Schwartz,
Dockery, and Neas (1996) that attributed effects on mor-
tality to fine rather than coarse particles, based in part on
the results of multivariable models that included variables
for both particulate measures.

A number of exposure assessment studies have found
sizable differences between actual personal exposures to
particles and estimates based on central monitor values
(eg, Wallace 1996). Some have questioned whether the
observed associations are plausible given these findings.
Schwartz, Dockery, and Neas have responded that, as the
number of deaths per day is calculated over the population,
the relevant exposure measure is the mean of personal
exposures on that day, which is probably more tightly cor-
related with central station monitoring than individual
exposures. Janssen and colleagues (1998) have reported that
much of the variation in PM10 measurements is between
people and that the longitudinal correlation between
average and ambient PM10 measures is relatively high. The
debate over measurement error and its consequences has
taken place, however, without the development of a com-
prehensive formulation of the problem.

Because exposure measurement error may have substan-
tial implications for interpreting epidemiologic studies on
air pollution, particularly the time-series analyses, this
section of the Investigators’ Report describes one system-
atic conceptual formulation of the problem of exposure
error in epidemiologic, time-series studies of air pollution
and considers the possible consequences for relative risk
estimation. We have used available and relevant data to
obtain rough estimates of the magnitudes of the effects of
measurement error for 1 city.

The next subsection presents an overview of the main
ideas on exposure measurement errors in linear regression,
distinguishing Berkson from classical type errors and the
univariate from multivariate predictor cases. The conceptual
framework for evaluation of measurement errors in the log-
linear regression models used for time-series studies of par-
ticulate air pollution and mortality identifies 3 main compo-
nents of error. We then present new analyses of data on
exposures to PM10 from the PTEAM study (Ozkaynak et al
1996) and illustrate how data on personal and ambient expo-
sure levels can be used to assess the effects of measurement
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error on the estimated associations of PM10 with daily
mortality. We also illustrate a statistical approach for
assessing the bias in a relative risk estimate caused by
exposure measurement error. We summarize the open
questions regarding measurement error and propose the
additional data needed to address these questions more
effectively.

MEASUREMENT ERROR EFFECTS IN 
REGRESSION MODELS

The fundamental concepts of how exposure error can
affect an epidemologic study of pollution and health are
presented here by considering the effects of exposure mea-
surement error in a standard linear Gaussian regression
model. This topic has been treated in full detail elsewhere
(Snedecor and Cochran 1980; Carroll et al 1984; Fuller 1987;
Thomas et al 1993; Carroll et al 1995). For simplicity, con-
sider a regression of the health response yt (eg, log mortality
rate on day t) and predictors xt (eg, PM10, O3, weather, …):

yt = ��+ �x xt + �t (1)

where � and �x are regression coefficients to be estimated
and �t represents residual error that is assumed to be inde-
pendent of xt� Here �x is the expected change in mortality
per unit change in true exposure. Given observations (xt,
yt), t = 1, . . . , T and appropriate assumptions about the dis-
tribution of the residuals, ordinary least squares estima-
tion provides optimal (unbiased and minimum varianced)
estimates of the regression coefficients.

Now we assume that instead of the true exposure levels
xt, we have only an imperfect measure of exposure,
denoted zt. The overall difference between xt and zt com-
prises multiple components of error including differences:
between individual- and population-average exposures;
between population-average exposures and ambient levels
at central sites; and between actual ambient levels and the
measurements of those levels. Suppose we regress the
health outcome yt on the imperfect zt rather than xt, which
is unavailable:

yt = �* + �z�zt + �*t. (2)

How will �̂z differ from �̂x?

To answer this question, we will first assume that zt is a
surrogate for xt (Carroll et al 1995), which means that,
given xt, there is no additional information in zt about yt.
We then can distinguish 2 fundamentally distinct types of
relationships between the true and measured exposures,

which represent poles of a measurement error continuum.
The first type is referred to as the classical error model
(Carroll et al 1995) in which we assume that z is an imper-
fect measure of x, so that the average z within each x
stratum equals x (E(z|x) = x). Then it follows that the mea-
surement error, (z – x), is uncorrelated with the true value
x. This classical model is a reasonable one for the differ-
ence between measured ambient levels of pollution and
the true values for a measuring device that is unbiased.
That is, when the true level of pollution is x, an unbiased
instrument will measure x on average, even if individual
measurements z differ from x.

The second type of model for measurement error is the
Berkson error model (Carroll et al 1995). In this model, we
assume that the average value of the true exposure x within
each stratum of measured level z equals z (E(x|z) = z). This
Berkson model is appropriate when z represents a measur-
able environmental factor that is shared by a group of
participants whose individual exposures x might vary
because of time-activity patterns. For example, z might be
the spatially averaged ambient level of a pollutant without
major indoor sources and x might be the personal expo-
sures, which, when averaged across people, match the
ambient level.

Classical and Berkson models for exposure measure-
ment errors represent 2 extremes of a continuum. Most
exposure errors combine elements of each, but because the
consequences for risk assessment of classical and Berkson
errors differ, it is useful to consider each in turn. In the
Berkson error case, if we regress yt on zt rather than on xt,
the estimate �̂z is an unbiased estimate of the coefficient
�x, which would be obtained by regressing yt on the actual
exposure xt. That is, having zt rather than xt does not lead
to bias in the regression coefficients under the surrogacy
assumption. The exposure measurement error does
increase the variance of the regression coefficient,
however, since having zt rather than xt is obviously not as
informative about the coefficient �x. Bias is not intro-
duced, however. The same is true if the average x at each
value of z differs from z by a fixed amount a, that is,
E(x|z) = z � a.

In contrast, under the classical error model, �̂z obtained
by regressing yt on the imperfect measure exposure zt is a
biased estimate of �x. In the simple linear regression with 1
explanatory variable, �̂z is expected to be smaller than �x,
or attenuated. The degree of attenuation increases as the
variance of the exposure error increases. Again, a constant
difference in the expected values of the 2 measures does
not change this result.

It is useful to establish the results summarized above on
the effects of exposure error on simple linear regression
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coefficients and helpful to do so in advance of considering
a multiple regression case. To reestablish notation, the
model of interest is

yt = � + �x�xt + �t (1)

but because xt is unobserved we instead might regress yt
on zt:

yt = �* + �z zt + �*t (2)

The question is how will �̂z from (2) estimate �x in (1).
Under the Berkson error model (E(xt|zt) = zt, so that we
can also infer the regression of y on z from (1):

E(yt|zt) = �* + �x E(xt|zt) = � + �xzt. (3)

Comparing (2) and (3) shows that in the Berkson error case:
�z = �x; that is, �̂z is an unbiased estimate of �x. Adding a
constant to 1 exposure variable affects only the intercept.

Under the classical model, zt is assumed to vary about xt
or E(zt|xt) = xt, which does not imply E(xt|zt) = zt.  If we
further assume that xt and (zt – xt) are jointly normally dis-
tributed, it can be shown that

E(yt|zt) = �** + c�xzt

where c is an attenuation factor between 0 and 1 given by
c = var (xt)|(var (xt) + var (	t)), where 	t =  zt – xt is the
exposure error. Again, a constant difference between the 2
exposure measures changes only the intercept.

Thus, the estimated regression coefficient is biased
toward 0. In one pertinent case, �x = 0, the naive estimate �̂z
is unbiased with E(�̂z) = �x = 0; that is, under the classical
error model, measurement error does not lead to spurious
associations if there is truly no association. Random varia-
tion, of course, can produce such associations by chance, as
it can absent measurement error. The probability of such
false positive associations (the Type I error rate), however,
remains the same.

For estimating effects of air pollution on mortality, real-
istic models have elements of both classical and Berkson
error models. In general, the effect of such exposure errors
is intermediate between the 2 extreme models. The effect
of measurement error, therefore, is likely to depend on the
direction and magnitude of the correlation of measurement
errors with the measured exposures, not just on the vari-
ance of the measurement errors.

We now consider the more complex case of multipol-
lutant models, which are often applied in an attempt to
estimate the independent effect of one particular pollutant

present in a mixture with other pollutants. For example, in
an analysis of air pollution and mortality in Philadelphia,
Kelsall and colleagues (1997) regress mortality on as many
as 5 pollutants. Because little empirical evidence about the
simultaneous errors in multiple pollutants is currently
available, this section only lays a foundation that can
inform the design of future studies, as discussed in the last
section. Confining attention to the classical and the
Berkson error cases, we again assume a linear regression
model of the form given by equation (1), where xt now rep-
resents a vector of exposure variables, with a corre-
sponding vector of regression coefficients �x; and zt
denotes a vector of measurements of each exposure vari-
able. In the Berkson error case, the assumption that
E(xt|zt) = zt, for a vector of errors uncorrelated with zt, still
ensures that the estimates of the regression coefficients are
unbiased, as in the univariate instance. But under the clas-
sical error model, the multiple regression extension is not
so straightforward. As before, we assume that E(zt|xt) = xt.
To compute E(xt|zt), let V denote the covariance matrix of
xt and let T denote the covariance matrix of 	t = zt – xt, and,
as before, we assume that 	 and x are independent. Then,
the matrix generalization of the earlier result is that
�̂z = �̂xC where C = T(T + V )�1. Now it is no longer true that
�zj < �xj for each component (j) and estimates of regression
coefficients can be biased toward or away from the null;
that is, positive associations can be produced even though
the true coefficient for a particular component is 0 when
the component is correlated with at least one component
having a nonzero effect.

Table 1 illustrates the magnitude of bias that can result
from regressing yt on 2 predictors z1t and z2t instead of on
x1t and x2t. This example might refer to estimating the
effects of PM10 and O3 on mortality when ambient values
(z) instead of personal exposure (x) are available. We
assume z1t = x1t	1t and z2t = x2t + 	2t, V11 = var (x1t) = V22 =
var (x2t) = 1. The table presents the expected values for the
estimated regression coefficients when the true values are
both 1 (�x1 = �x2 = 1) for varying values of the correlation
between x1t and x2t, the variances of 	1t and 	2t, and the
correlation between the measurement errors 	1t and 	2t. At
present, there is little empirical evidence about the nature
or size of the correlations between pairs of pollutant mea-
surements, and the table is intended to illustrate the conse-
quences of measurement error in the 2-predictor model.

The first line of the table refers to an example in which
there is no correlation between x1t and x2t; there is equal
variability of the 2 exposure errors 	1t and 	2t; and these
errors are not correlated. That is, the error in one predictor
does not predict the error in the other. Here, there is an
equal degree of attenuation in the coefficients for the



19

JM Samet et al

2 variables. With unequal variances but no correlation,
that is, the sixth row, the degree of attenuation is greater for
the variable with greater variance. If the exposures are cor-
related, but the errors are uncorrelated (the second and
third rows), the 2 effect estimates are similarly altered with
the direction of the effect depending on the sign of the cor-
relation. Introducing correlation between the errors, that
is, the fourth and fifth rows, has an effect that depends on
the pattern of correlation. The bottom half of Table 1 shows
more complex patterns with differing patterns of correla-
tion and variation of the 2 errors. Some of the scenarios
introduce substantially different effects of the 2 variables,
but none yield effect estimates above the true value of 1,
even with more extreme differences in error variances or
the 2 correlations.

Table 2 also addresses the consequences of measurement
error in a 2-variable model, but in this example only 1 vari-
able (x2) has a true effect; the other exposure x1 has no effect
on the health outcome y. Either correlation between x1t and
x2t or their errors can introduce an apparent effect of x1 on
y. Some scenarios of variance and correlation even bring the
apparent effects of the 2 variables quite close (eg, the 10th
and 11th rows), but in every case, including more extreme
situations than shown, the estimate for the true predictor
(�2) is always larger than for the null predictor (�1).

Some general conclusions can be offered concerning mul-
tipollutant models under this simple, classical error model.

1. There is a general tendency for �zj < �xj if all �xj > 0.

2. The degree of attenuation of each coefficient depends,
in large part, on its measurement error variance relative
to the variance of the true exposure—that is, Tjj/Vjj.
Thus, the coefficients for variables that are measured
with considerable error will be attenuated more than
those of variables with less error.

3. Depending on the correlation structure of the attenua-
tion matrix C, some of the effect of one variable, �xj,
may be transferred to the estimate of another variable’s
effect, �̂zk. Such transfers of effect are generally from a
more poorly measured variable to a better measured
variable. For such transfers to be large, however, the
true exposure variables or their measurement errors
need to be substantially correlated.

4. As a consequence of conclusion (3), the estimate of a
parameter can be biased away from the true value.
However, this type of bias generally arises only with a
very strong negative correlation between the measure-
ment errors (eg, the 9th to 11th rows of Table 2).

5. Also as a consequence of (3), there will generally be
spurious associations for a variable xj that, in fact,
has no effect only if xj is substantially correlated with
one or more variables that actually have an effect.
Generally, the correlation among the errors has a
larger influence on the bias than the correlation
among the true pollutant levels.

  

Table 1. Predicted Bias in Bivariate Regression Coefficients Under Different Covariance Structures for True Exposures 
and Measurement Errors When Both Variables Have True Effect: �x1 = �x2 = 1.0a 

Row
Correlation

(x1, x2)
Variance

(	1)
Variance

(	2)
Correlation

(	1, 	2) E(�̂z1) E(�̂z2)

1 0.0 1.0 1.0 0.0 0.50 0.50
2 0.5 1.0 1.0 0.0 0.60 0.60
3 �0.5 1.0 1.0 0.0 0.33 0.33

4 0.0 1.0 1.0 0.5 0.40 0.40
5 0.0 1.0 1.0 �0.5 0.67 0.67
6 0.0 0.5 2.0 0.0 0.67 0.33

7 0.5 0.5 2.0 0.0 0.71 0.53
8 0.5 0.5 2.0 0.3 0.66 0.27
9 0.5 0.5 2.0 0.5 0.64 0.21

10 0.5 0.5 2.0 0.7 0.64 0.14
11 0.5 0.5 2.0 �0.5 0.83 0.50
12 0.5 0.5 2.0 �0.7 0.91 0.57
13 0.5 0.5 2.0 �0.9 1.00 0.66

a We assume Var(x1) = Var(x2) = 1.
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These conclusions are obtained from and therefore
pertain to the classical linear regression model with 2 pre-
dictors, assuming zt is a surrogate for xt (nondifferential
errors). The actual exposure measurement situation in the
air pollution–mortality context is obviously more complex.
First, log-linear, not linear, models are used, although the
degree of nonlinearity is usually small in mortality studies.
Second, the measurement errors are not purely of the clas-
sical, nondifferential type. For example, the degree of error
for gaseous pollutants may depend on temperature or other
covariates. Finally, errors may be multiplicative rather than
additive. Nonetheless, the linear regression with classical
measurement error is a leading case that provides insight
into the major possible consequences of exposure errors.

FRAMEWORK FOR ASSESSING MEASUREMENT 
ERROR EFFECTS

Building on the fundamental concepts underlying sta-
tistical models of exposure measurement error, we focus
here on the specific log-linear regressions used for
assessing the pollutant-mortality association, controlling
for weather variables. We identify 3 major components of
measurement error and present a statistical framework for
evaluating their potential effects on the estimated pol-
lutant-mortality associations. The discussion below is
based on the premise that the ideal investigation of the
health effects of air pollution would be conducted at the
individual level with measurements of personal exposure
to pollutants. Exposure and mortality data, however, are
generally available only after aggregation to a municipal

level; little or no data from indoor air monitoring are avail-
able. Finally, air pollutant measurements are imprecise,
and this imprecision has consequences for estimates of
pollutant effects on mortality, as described in the previous
section.

To investigate the effects of exposure error in the log-
linear regressions widely used to assess the pollutant mor-
tality association, consider the following model for an
individual’s risk of mortality:


it = 
0it exp(xit�x) (4)

where 
it is the risk of death for person i on day t; 
0it is
that individual’s baseline risk in the absence of exposure,
that is, xit = 0; and exp(xit�x) is the relative risk of death
associated with the explanatory variables. Let yit = 1 if
person i dies on day t and 0 if he does not. We typically
observe the total number of deaths for a population
yt =

nt

�
i=1

yit  where nt ��n is the population size on day t. By (4),
the expected total numbers of deaths 
t in a community is


t = Eyt = 
i
�
it = 

i
�
0it exp(xit�x). (5)

In analyzing population-level data on mortality and air
pollution, log-linear regressions of the form


t = exp(s(t) + zt�z + ut�u) (6)

have been fit where s(t) is an arbitrary but smooth function
of time introduced to control for the confounding of longer-
term trends and seasonality, zt is the average of multiple
monitor measurements of ambient pollution measurement

 

Table 2. Predicted Bias in Bivariate Regression Coefficients Under Different Covariance Structures for True Exposures 
and Measurement Errors When Only One Variable Has True Effect: �x1 = 0, �x2 = 1.0a

Row
Correlation

(x1, x2)
Variance

(	1)
Variance

(	2)
Correlation

(	1, 	2) E(�̂z1) E(�̂z2)

1 0.0 0.5 2.0 0.0 0.00 0.33
2 0.0 0.5 2.0 0.5 �0.12 0.35
3 0.0 0.5 2.0 �0.5 0.12 0.35

4 0.5 0.5 2.0 0.0 0.06 0.29
5 �0.05 0.5 2.0 0.0 �0.06 0.29
6 0.5 0.5 2.0 0.3 �0.01 0.28

7 0.5 0.5 2.0 0.5 �0.07 0.29
8 0.5 0.5 2.0 0.7 �0.15 0.29
9 0.5 0.5 2.0 �0.5 0.17 0.33

10 0.5 0.5 2.0 �0.7 0.21 0.36
11 0.5 0.5 2.0 �0.9 0.26 0.39

a We assume Var(x1) = Var(x2) = 1.
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for day t, and ut are other possible confounders such as
temperature and dew point on the same and previous days.

If the regression coefficient �x for a pollutant in the per-
sonal risk model (4) is the target for inference, how closely
do estimates of �z from model (6) approximate �x? Below,
we identify potential sources of bias in �̂z as an estimate of
�x, using the concepts of Berkson and classical measure-
ment error.

Figure 1 poses a model of the relationship between the
personal exposure to a pollutant xit for person i on day t
and the available ambient values zt measured with error by
monitors. Assuming, for simplicity, a high degree of spatial
homogeneity in ambient levels, personal exposure is con-
tributed to by z*t, the true outdoor level; and by wit, the
indoor level, which is also influenced by z*t from penetra-
tion of the pollutant in outdoor air into indoor spaces. For
example, personal exposure to PM10 is determined by the
time spent outdoors, the concentration during that time,
and by the concentrations in indoor environments that are
determined by indoor sources such as cigarette smoking
and the penetration of particles indoors, as air is exchanged
between the outdoor and indoor environments. Figure 1
further shows that personal risk of dying is influenced by a
person’s baseline risk in addition to the unobserved per-
sonal exposure to pollutant xit. Only the measured ambient
pollution data, shown in a rectangular box, are actually
observed.

In considering the consequences for �̂z, as an estimate of
�x, of having an imprecise measure of ambient pollution zt,
rather than actual personal exposure xit, it is useful to

begin by decomposing the pollution measurement differ-
ence between xit and zt into 3 components:

xit = zt + (xit � x̄t) + (x̄t � z*t ) + (z*t � zt). (7)

Here, (xit � x̄ t) is the error due to having aggregated
rather than individual exposure data; (x̄t – z*t ) is the differ-
ence between the average personal exposure and the true
ambient pollutant level; and (z*t � zt) represents the
difference between the true and the measured ambient
concentration.

The first term, (xit � x̄ t), is an example of Berksonian
error, so that in a simple linear model, having aggregate
rather than individual exposure does not itself lead to bias
into the regression coefficient. The second term, (x̄t � z*t ),
is not Berksonian and is likely to be a source of bias. The
final term, (z*t � zt), is largely of the Berkson type if the
average of the available monitors zt is an unbiased estimate
of the true spatially averaged ambient level z*t.

We can now further study the effects of these 3 terms on
risk estimation by substituting the decomposition in equation
(7) into equation (5). After some straightforward calculations,
the expected number of deaths on day t can be written

Eyt = exp(log(nt�
0t) + zt�x 

+ [(x̄t
(w) � x̄t) + (x̄t � z*t) + (z*t � zt)]�x). (8)

Here �x is the personal log relative risk of interest from
equation (5). Note the approximation of equation (8) retains
only linear terms in the expansion of an exponential func-
tion. The second-order terms are an order of magnitude
smaller and are ignored to simplify the exposition. For
studies of particulate pollution effects on mortality, the
effect sizes are on the order of only a percent or two, so that
ignoring second-order terms should not qualitatively
change the results. In studies of morbidity, higher-order
terms may be more important.

The total baseline risk, (nt�
0t), almost certainly varies
smoothly over time, since it is an average risk over a large
population. Hence, it will be appropriately controlled for
in log-linear regressions by inclusion of the smooth s(t) in
equation (6). We now consider zt�x and the 3 components
of error in turn.

The first error term, (x̄ t
(w) � x̄ t), is proportional to the

difference between the baseline-risk-weighted average
personal exposure and the unweighted average personal
exposure, where risk refers to the probability of mortality
during the reference period for exposure. It derives from
the Berkson error (xit � x̄ t) and produces no bias in the
linear, unaggregated model. This difference, which is due

Figure 1. Ambient measured pollution level zt as related to true ambient
level zt*, indoor exposure wit, personal exposure xit, and risk of death �it
assuming spatial homogeneity in ambient levels.
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to risk weighting in our log-linear model with person-spe-
cific baseline risks, is likely to be small and to vary slowly
over time. Hence, it can be adequately controlled by inclu-
sion of the smooth function s(t) in the log-linear regression
of yt on zt. One scenario in which this difference would
vary from day to day and therefore not be adequately con-
trolled would occur if the more frail individuals were to
follow pollution reports (or a correlate such as weather)
and reduce their exposures to ambient air on high pollution
days by, for example, staying indoors. Current warning sys-
tems for air pollution alerts are intended, in fact, to reduce
exposures of susceptible persons in this fashion.

The second error term, (x̄t � z*t), is non-Berksonian and
has the greatest potential to introduce bias in the estimate
�̂z when z*t  is correlated with (x̄t � z*t). Even if the terms are
uncorrelated so that �̂z will be a roughly unbiased estimate
of �x, it will reduce efficiency relative to a study in which
xt is available, since zt and (x̄t � zt) share the same coeffi-
cient in equation (8).

The difference, (x̄t � z*t), between average personal expo-
sures and the true ambient value can be analyzed further
by considering an individual personal exposure xit.
Because the exposure of individual i on day t derives
either from indoor or ambient sources, we can write
xit = �itz*t + (1 � �it)Iit where Iit is the concentration of pol-
lutant generated by indoor sources such as tobacco smoke
and pets, and �it is the individual’s fraction of exposure
from ambient sources that takes place either outdoors or
results from penetration of ambient pollution indoors. It
follows that x̄t = �̄tz*t + Īt where Īt = �

t
(1 � �it)Iit/nt. That is,

the average personal exposure is proportional to the
ambient level offset by the effects of the population
average of the nonambient indoor sources.

Wilson and Suh (1997) have argued that the daily popu-
lation average concentrations of fine particles derived
from indoor sources Īt are approximately independent of
ambient levels zt across time. When this is true, failure to
measure indoor sources will not introduce further bias in
the estimation of �x because the deviations due to indoor air
exposure are a second example of Berkson error, and these
errors will tend to cancel one another out when averaged
over the population. Nevertheless, z*t  is only proportional
to x̄t, so that, even if �̄t varied little over time (�t � �), the
coefficient �̂z from a regression of yt on z*t would estimate
��x, not �x. Hence, if 20% of daily exposure results from
indoor sources independent of ambient levels, the regres-
sion on ambient levels will yield coefficients that are
roughly 20% smaller than would have occurred with
actual personal exposures. This may be the appropriate

coefficient for policy makers seeking an estimate of the
effect of an inarguable measure of ambient levels. This
assumes, however, that particles from indoor sources and
outdoor sources are identical; that is, they are similar in
composition and toxicity. If this is not the case, then the 2
types of particles would be more appropriately treated as
separate pollutants, and the personal exposure measure
desired would be �itz*t, the personal exposure to particles
from outdoor sources. Studies using sulfates as a tracer for
particles from outdoor sources indicate that indoor/out-
door ratios are less than 1. Since people spend most of
their time indoors, this suggests that �it will be less than 1,
and that the second term in equation (8) will be negatively
correlated with zt and will bias the estimated coefficient
downward. This also illustrates that the model is not
restricted to cases where E(x) = E(z).

The last of the 3 error terms in equation (8), (z*t � zt), rep-
resents the instrument measurement error in the ambient
levels; like (xit � x̄ t), it is close to the Berkson type. This
term would tend to be cancelled out by spatial averaging
across multiple, unbiased ambient monitors in a region.
For example, Kelsall and colleagues (1997) averaged daily
total suspended particles data from up to 9 monitors in
their analysis of effects of particles on mortality in Phila-
delphia. However, in many cities there are only one or a
few monitors operating at a time. Even with a small
number of monitors, longer-term drift in instruments will
not substantially affect estimates of �x because the time-
series models control for such trends by including s(t) in
equation (6). For this final error term to cause substantial
bias in �̂z, the error, (z*t � zt), must be strongly correlated
with zt at shorter time scales. Further investigations of this
correlation in cities with many monitors are warranted.

To summarize, we have discussed 3 components of mea-
surement error: (1) an individual’s deviation from the risk-
weighted average personal exposure; (2) the difference
between the average personal exposure and the true
ambient level; and (3) the difference between the measured
and the true ambient levels, which includes spatial varia-
tion and instrument error. Our analysis argues that the first
and third components are of the Berkson type and, there-
fore, are likely to have smaller effects on the relative risk
estimates. However, the second component can be a source
of substantial bias, if, for example, there are short-term
associations of the contributions of indoor sources with
ambient concentrations. The following simple analysis of
the PTEAM data illustrates how we can further study the
effects of the most important second component.
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EVALUATING POTENTIAL MEASUREMENT 
ERROR BIAS IN RELATIVE RISK ESTIMATES

The framework in combination with data on the compo-
nents of error can be used to evaluate and possibly adjust
for the consequences of exposure measurement error. We
use one of the few available data sets with ambient and
personal measurements to illustrate one approach. We
begin by using daily measurements of personal exposure
for 178 persons followed in the PTEAM study (Ozkaynak
et al 1996) to quantify the difference between concentra-
tion measured by an ambient monitor and the average of
personal exposures. We then present one approach for esti-
mating the degree of bias in estimated PM10-mortality
regression coefficients �̂z. This coefficient is an estimate of
the true relative risk for personal exposure �x with data
from 1 or a few ambient monitors rather than personal
exposure data for PM10.

PTEAM STUDY DATA

The PTEAM study (Mendelsohn and Orcutt 1979;
Ozkaynak et al 1996) generated a daily measurement of
personal exposure to PM10 for a sample of 178 nonsmok-
ing residents of Riverside, California, aged 10 years or
older, for the period September 22 through November 9,
1990. In addition, a daily average PM10 value from an
ambient monitor positioned near the homes was also col-
lected; Pellizzari and Spengler (1990) provide details on
the methods used to collect these data.

We use the PTEAM study data to estimate the correlation
between the daily PM10 concentration for the ambient
monitor zt and the difference between the average personal
exposure and concentration measured by the ambient mon-
itor, (x̄ t � zt). These estimates correctly account for the
varying number of observations on a given day. Note that
equation (8) includes a weighted average of personal expo-
sures, with weights determined by the baseline personal
risk for each individual. In the PTEAM study, those weights
are unavailable; hence, an unweighted average is used.
Figure 2 displays a time-series plot of the daily ambient
values and the average personal exposures. The correlation
across time of these 2 series is estimated to be 0.58 (95%
confidence interval [CI], 0.35 to 0.74). This is much greater
than the more widely cited cross-sectional correlation from
this study. The corresponding correlation across time
between the ambient monitor concentrations and the
daily differences between the personal and ambient
values is �0.63 with 95% CI, �0.77 to �0.42. Hence, the
hypothesis (the measurement error, [x̄ t � zt], is uncorre-
lated with zt) is not consistent with the PTEAM study data.
Some bias in the regression coefficient is therefore

expected. Because the correlation of (x̄t � zt) and zt is nega-
tive, the coefficient �̂z in the regression on zt will tend to
underestimate the coefficient in the regression on x̄ t in a
single-pollutant analysis.

ADDRESSING BIAS IN PM10-MORTALITY 
REGRESSION COEFFICIENTS

The PTEAM study results or other, perhaps more ap-
propriate, data sets on the difference between average
risk-weighted personal exposure and ambient monitor
concentrations can be used to estimate bias in the results
of log-linear regression models.

If they had been available, we would have used the
average personal exposure series, x̄t, for at-risk residents of
each city in the standard log-linear regression model rather
than zt, as was used in the original analyses. We would then
have compared the regression coefficients obtained when
x̄t is the predictor with those using zt to assess the bias.

Obviously, x̄t is not available except in special circum-
stances. From the PTEAM study data, however, shown in
Figure 2 or similar data, we can estimate the relationship
of x̄t and zt, for example, by assuming:

x̄t = 
0 + 
1zt + �t, (9)

where 
0 and 
1 are the intercept and slope to be estimated
from the available data. We can then use the fitted equa-
tion (9) to predict the unobserved x̄t from the available zt,
and then use the predicted value x̄̂ as the desired exposure
values when estimating the pollution-mortality relative
risk �x. The estimate of �x has the simple form �̂x = �̂z / 
̂1.
This is one well-known approach to adjust for exposure
measurement error called regression calibration (Carroll et
al 1995). As an illustration, we have applied this strategy
to a regression of daily mortality on ambient concentra-
tions of PM10 for Riverside, California, for the period 1987
to 1994. We estimate 
̂0 = 59.95 (se = 7.21), 
̂1 = 0.60
(se = 0.080), and var(�) = 22.4.

Calibration is easy to implement and apply. Its limita-
tions are that CIs for �̂x depend on large sample theory, and
calibration does not extend easily to situations where mul-
tiple sources of information about the x̄ t, zt

  relationship
are available.

It is simple, however, to overcome these possible limita-
tions of calibration by using a simulated value x̄*t rather
than the predicted value x̄̂  from equation (9). That is, we
use equation (9) to simulate the average personal exposure,
x̄*t , from the ambient exposure, zt, for a city or period of
interest when x̄ t is not available, under the assumption
that the estimated 
 and var(�) are applicable. This simu-
lated series�x̄*t is then used instead of zt in the log-linear
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regression. The result is one estimate of �x—call it �̂x. If we
then repeatedly simulate�x̄*t and fit the log-linear regres-
sion for each to obtain �̂x, we obtain a distribution of �̂x.
The difference between the mean of the simulated �̂x and
the �̂z derived from the log-linear regression of mortality
on z̄ *t is a measure of the bias resulting from having zt
rather than the average personal exposure for that city. By
simulating�x̄*t rather than using a fixed predicted value x̄̂t,
we properly account for nonlinearities and sources of vari-
ation in �̂x and can extend the analysis to more compli-
cated situations.

Figure 3 shows the distribution of the �̂x for Riverside
(solid curve). Also shown is the normal approximation of
the likelihood function for the coefficient �̂z from the log-
linear regression of mortality directly on zt (dotted curve).
Solid and dotted lines are at the centers of these distribu-
tions. We find that the �̂x have a mean 1.42% increase in
mortality (95% interval: –0.11, 2.95) per 10-unit change in
PM10. In comparison, the estimate of �z from the usual log-
linear model (seen as a dashed vertical line in Figure 3) is
�̂z = 0.84% (95% interval: –0.06, 1.76). Hence, measure-
ment error has biased the result toward the null. Second,
the distribution of the �̂x is more dispersed than the distri-
bution of �̂z. This is because we have taken into account the
variability due to having zt, not x̄ t. These results are very
similar to the ones we obtain from calibration.

The calculation in the previous paragraph assumes the
estimated relationship between x̄ t and zt for the PTEAM
study is the true one, and hence, we ignore a second com-
ponent of uncertainty that occurs from estimating the rela-
tionship between x̄t and zt from the finite sample size of the
PTEAM study data taken at 1 site and a particular time
period. That is, even if we assume that the relationship
between x̄ t and zt is known, estimating the association of
mortality with x̄t is less precise than estimating it with zt,
given only zt in that particular city. Of course, the relation-
ship of x̄ t and zt is not precisely known and needs to be
quantified further. Dominici and colleagues in section 2 of
this report provide a more complete analysis of the bias in
�̂z as an estimate of �x using the PTEAM study and 4 other
data sets and a more complete statistical model than
described here. Their findings are qualitatively similar to
those presented here. Finally, it is important to note that
our assessment of bias assumes that the health effects of
personal exposure to particles originating outdoors and
indoors are the same. To assume otherwise would require
substantially more detailed data and modeling.

Figure 2. PTEAM Study. Daily time series of personal and central site con-
centrations of PM10 for Riverside, California, from September 22 to
November 9, 1990 (Ozykaynak et al 1996).

Figure 3. Distribution of personal exposure effects. The solid line is the
distribution of the relative rate �̂x obtained when the simulated series x̄t of
the total personal exposure is the predictor in the log-linear regression. The
dotted line is a normal approximation of the distribution of the relative rate
�̂z obtained when the ambient concentration zt in Riverside, California, is
the predictor in the log-linear regression.
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SUMMARY AND RESEARCH 
RECOMMENDATIONS

The differences between true personal exposure for
every individual (xit) and measured ambient concentra-
tions, averaged over a few fixed, imprecise monitors (zt),
are inherently complex, as is the effect of this exposure
measurement error on estimates of pollution-mortality
relative risks. Nonetheless, it is useful and imperative to
analyze these effects in light of our current understanding
of the measurement process. This section presents one
framework for doing so. We distinguish 2 extremes of a
continuum of types of measurement errors: Berkson and
classical errors. The former is likely to create little bias in
mortality-relative risk estimates; the latter has more seri-
ous consequences.

We posit a relative risk model in which an individual’s
hazard of death on a given day is expressed as a function of
his or her personal exposure, which is decomposed to
highlight 3 types of exposure errors. This model is then
aggregated to produce the model for the expected total
deaths in a population used in most time-series analyses.
This model shows that a risk-weighted average personal
exposure measure is the desired one, and we discuss the
consequences of the widely used feasible alternative,
ambient concentration. In contrast, differences between
individual exposures on a given day and the risk-weighted
average of personal exposures are an example of Berkson
error and are not likely to cause substantial bias in coeffi-
cients from time-series mortality studies. Our analysis sug-
gests that the largest biases in inferences about the
mortality–personal exposure relative risk will occur due to
the more complex errors between ambient and average
personal exposure measures. If indoor sources produce
particles of similar composition and toxicity as outdoor
source particles, indoor sources may be a major compo-
nent of this error. Finally, as an illustration we have used
the best available data, that from the PTEAM study in
Riverside, California, with both personal exposure and
ambient time series to quantify the size of this error. Our
analysis indicates that the coefficient obtained from
regressing mortality on measured ambient level zt is
smaller than what we expect from regressing mortality on
average personal exposure x̄t.

For tractability and clarity, we have conducted a first-
order analysis of exposure errors and have ignored possible
second-order and higher-order effects in which daily
fluctuations in the variance of personal exposures across a
population or in the covariations among the measurement
errors could introduce additional biases. Second-order
terms will be insignificant in studies of particulate effects

on mortality where the first-order terms are on the order of
percent. Such higher-order analyses for other studies of, for
example, morbidity, are beyond the scope of this report and
will require substantially more detailed models and data. It
is, however, possible that higher-order effects are impor-
tant; thus further investigation is necessary.

Epidemiologic research is necessarily limited by the
quality of the health outcome and risk factor measure-
ments (Vedal 1997). Time-series studies of the acute effects
of air quality on mortality are subject to the limitations
posed by the available measurements of pollution levels.
The generic criticism—that measurement errors render the
results of such time-series models uninterpretable—is
incorrect. The consequences of measurement error can be
quantified, although only a few informative data sets are
presently available. Further differences between the
average personal exposure and ambient measurements are
the most likely source of substantial bias. We suggest that
data should be collected for comparison of risk-weighted
average personal exposure with ambient levels in several
cities with varying degrees of spatial heterogeneity in
ambient levels, population composition, and indoor pollu-
tion sources. Given such data, models such as those sum-
marized in this section and by Dominici and colleagues in
section 2 of this report can be used to quantify more pre-
cisely the biases due to pollutant measurement errors.

Section 2 focuses on the effects on relative risk estimates
of using zt, measured ambient particle levels, rather than
xit, and actual personal exposures in log-linear regressions.
Such effects are important from a scientific perspective to
quantify the health risks of exposure to particulate pollu-
tion. From a regulatory perspective, the effect of having the
imprecise zt rather than the true ambient value z*t may be
of greater interest, since what may or may not be regulated
further are ambient levels. A more detailed error analysis
of the zt � z*t difference would investigate the spatial vari-
ation in particulate levels and the way that the number of
monitors used to calculate zt reduced this source of mea-
surement error.

The analyses of sections 3 and 4 focus on measurement
error in a single pollutant measure, PM10. Simultaneous
errors in several pollutants can complicate the analysis. As
clearly demonstrated, however, qualitative biases—that is,
changes in the sign of a coefficient—can occur only when
the measurement errors for different pollutants are highly
correlated with one another. This level of correlation
might arise if 2 or more pollutants are measured by the
same instrument (eg, different fractions of PM) or if mul-
tiple instruments are housed in the same location, which
is subject to atypical exposure patterns. The possibility of
this level of correlation nevertheless requires detailed
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investigation because in this case the findings of epidemi-
ologic studies could be misleading. Personal exposure
studies that collect multiple exposures can provide the
necessary data to investigate the effects of co-occurring
errors using straightforward extensions of the approaches
outlined in sections 3 and 4.

The measurement error framework and the illustrative
calculations in section 2 make apparent several open ques-
tions and opportunities for additional data collection that
would enable more accurate quantification of the effects of
measurement error in assessing the air pollution–mortality
relationship. In relation to single-pollutant models, we
consider that the 2 most important questions are:

• Is the average personal exposure to pollutants from 
indoor sources correlated with ambient levels over 
time?

• Does the difference between baseline risk-weighted 
average exposure and population average exposure 
vary slowly over time?

For models with multiple pollutants, the additional key
question is:

• How do the components of error identified in equa-
tion (5) co-vary across pollutants? For example, how 
do the differences between actual ambient levels and 
the measured levels correlate across the different pol-
lutants, and how do these differences depend on the 
true values of other pollutants or covariates?

Wilson and Suh (1997) have conducted a meta-analysis
of data from multiple sites and conclude, in answer to the
first question above, that concentrations of fine particles
originating from indoor sources are independent of
ambient levels over time. To confirm this finding and to
address the remaining key questions, additional research
is warranted. It would be highly informative if, in several
cities with diverse pollution sources and patterns, a strati-
fied sample of the population were drawn with one
stratum representing the entire population and the second
representing the frail subgroup. Daily measurements of
personal exposure and indicators of indoor sources would
be collected for multiple pollutants for each person.
Ambient levels would also be monitored. Decisions about
the numbers of persons within each subgroup and the
numbers of days of monitoring for each person would be
made based on preliminary analyses of data from 1 city.
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Section 2: A Measurement Error Model for Time-Series Studies of Air Pollution 
and Mortality

Francesca Dominici, Scott L Zeger, and Jonathan M Samet

ABSTRACT

One barrier to interpreting the observational evidence
concerning the adverse health effects of air pollution for
public policy purposes is the measurement error inherent
in estimates of exposure based on ambient pollutant mon-
itors. Exposure assessment studies have shown that data
from monitors at central sites may not adequately repre-
sent personal exposure. Thus, the exposure error resulting
from using centrally measured data as a surrogate for per-
sonal exposure can potentially lead to bias in estimates of
the health effects of air pollution.

This section of the Investigators’ Report presents a mul-
tistage Poisson regression model for evaluating the effects
of exposure measurement error on estimates of effects of
ambient particulate matter (PM)* on mortality in time-
series studies. To implement the model, we have used 5
validation data sets on personal exposure to PM less than
10 µm in aerodynamic diameter (PM10). Our goal is to
combine data on the associations between ambient con-
centrations of PM and mortality for a specific location,
with the validation data on the association between
ambient and personal concentrations of PM at the loca-
tions where data have been collected. We use these data in
a model to estimate the relative risk of mortality associated
with estimated personal exposure concentrations and
compare this estimate with the risk of mortality estimated
with measurements of ambient concentration alone. We
apply this method to data comprising daily mortality
counts, ambient concentrations of PM10 measured at a

central site, and temperature for Baltimore, Maryland,
from 1987 to 1994. We have selected our home city of Bal-
timore to illustrate the method; the measurement error cor-
rection model is general and can be applied to other
appropriate locations.

Our approach uses a combination of (1) a generalized
additive model with log link and Poisson error for the mor-
tality–personal exposure association, (2) a multistage linear
model to estimate the variability across the 5 validation
data sets in the personal–ambient exposure association,
and (3) data augmentation to address the uncertainty
resulting from the missing personal exposure time series in
Baltimore. In the Poisson regression model, we account for
smooth seasonal and annual trends in mortality using
smoothing splines. Taking into account the heterogeneity
across locations in the personal–ambient exposure rela-
tionship, we quantify the degree to which the exposure
measurement error biases the results toward the null
hypothesis of no effect, and estimate the loss of precision in
the estimated health effects due to indirectly estimating
personal exposures from ambient measurements.

INTRODUCTION

Pollution of outdoor air is a public health concern
throughout the world. In the last decade, many epi-
demiologic studies have shown an association between
measurements of ambient concentrations of PM10 and
nonaccidental daily mortality counts (Dockery and Pope
1994; Schwartz 1995; Bascom et al 1996a,b; Dominici et al
2000). These studies suggest that daily rates of morbidity
and mortality from respiratory and cardiovascular diseases
increase with levels of particulate air pollution even at
levels well below the current National Ambient Air
Quality Standard (NAAQS) for PM in the United States.

One scientific objective of risk assessment of particulate
air pollution is an estimation of the increase in risk of mor-
tality per unit increase in personal exposure to particu-
lates. Epidemiologic studies, however, rarely obtain
personal exposures and instead use measurements of
ambient concentrations obtained typically from one or a
few monitors stationed in the region where aggregate rates
of morbidity or mortality are assessed. When exposures are

* A list of abbreviations and other terms appears on page 13.
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measured with error, the power of such epidemiologic
analyses is reduced (Carroll et al 1995).

In a recent nationwide study of the ways that people
spend their time, based on interviews with 9,386 respon-
dents in 1993 to 1994 (Robinson and Nelson 1995), US
residents were found to spend 87.2% of time indoors, 7.2%
in or near vehicles, and only 5.6% outdoors. Consequently,
exposure to air pollution takes place in multiple environ-
ments over time and in multiple locations, and accurately
estimating the actual personal exposures responsible for
disease or death can be daunting. Exposure assessment
studies (Lioy et al 1990; Mage and Buckley 1995; Ozkaynak
et al 1996; Wallace 1996; Janssen et al 1997, 1998) show that
data from monitors at central sites may be only weakly cor-
related with personal exposures, indicating that using cen-
trally measured data as a surrogate can lead to bias in
estimates of the health effects of air pollution.

We have developed a model for investigating differences
in relative risk estimates that arise from using ambient
concentration measurements rather than personal expo-
sure measurements. Let Xt represent average personal
exposure to particulate pollution, Zt be the measured
ambient concentration of particulates, and Yt be the num-
bers of deaths in a region of interest (eg, Baltimore, Mary-
land). We suppose that the regression of interest has the
log-linear form E[Yt] = exp(Xt �x + confounders) so that �x
is the log relative risk of death associated with a unit
change in average personal exposure. Suppose, however,
that only time-series data from monitors Zt rather than Xt
are available for Baltimore. Suppose further that, for sev-
eral other locations and/or time periods, we have limited
measurements of both Xt and Zt, so that a model can be
constructed for the relationship of average personal expo-
sures and ambient concentrations, taking account of varia-
tions within and across locations.

This model combines the log-linear model for Yt given
Xt  with a measurement error model for Xt given Zt to make
inferences about �x. The parameter �x is important from a
scientific and etiologic perspective since it quantifies the
human risk of actual particulate pollution. As discussed
below, the direct regression of Yt on Zt  giving �z is also of
interest from a regulatory perspective, because only
ambient concentrations are currently regulated.

Our modeling approach incorporates relevant data from
5 separate epidemiologic studies and properly accounts
for heterogeneity in the Xt ��Zt�relationship across studies.
This hierarchical extension also allows us to apply the
measurement model to a new site such as Baltimore and to
include uncertainty about the Xt ��Zt relationship in the
estimation of �x for that new site.

More specifically, at the first stage of the measurement
model we use a Poisson regression model to describe the
association between daily mortality and the population-
average personal exposure in Baltimore, which is a
missing predictor. At the second stage, we use the supple-
mental information about personal exposure from the
available exposure studies to model the association
between average personal exposure and ambient concen-
trations. We use a combination of Bayesian hierarchical
modeling (Lindley and Smith 1972; Morris and Normand
1992) and data augmentation (Tanner 1991) to estimate �x,
the log relative rate of mortality associated with average
personal exposures to PM10 for Baltimore.

A hierarchical model is a flexible tool for modeling vari-
ability across studies of the relationship of personal and
ambient exposure concentrations. Hierarchical multivariate
regression models with missing predictors for both contin-
uous and categorical data have been developed by Dominici
(2000) and Dominici and colleagues (1997, 1999). Data
augmentation can be used to account for uncertainty
appropriately in estimates of the log relative rate of mor-
tality resulting from the missing personal exposure data.
Computationally, data augmentation can be handled
conveniently using Markov chain Monte Carlo (MCMC)
techniques (Tanner and Wong 1987; Gelfand and Smith
1990; Tanner 1991; Spiegelhalter et al 1994), which we
adopt here.

Regression calibration models have previously been
used to account for measurement error in nonlinear models
(Carroll et al 1995). Armstrong (1985) suggested regression
calibration for linear models, and Rosner, Willett, and
Spiegelman (1989) developed regression calibration
methods for logistic regression. Carroll and Stefanski
(1990) applied regression calibration to generalized
additive models with measurement error, using quasi-like-
lihood methods to handle predictors measured with error.
Prentice (1982) and Clayton (1991) discuss the covariate
measurement error problem for the proportional hazards
model. See Fuller (1987) and Stefanski (1985) for a detailed
discussion of measurement error in linear and nonlinear
models, respectively. Dellaportas and Stephens (1997),
Richardson and Gilks (1993), and Mallick and Gelfand
(1994) have developed Bayesian measurement error
approaches.

The Data Sources section describes the database for Bal-
timore, Maryland, and for the 5 studies reporting personal
concentrations and ambient measurements of PM10. These
represent the best data on personal exposures published in
the epidemiologic literature available to us. In the Methods
section, we describe a generalized additive model with log
link and Poisson error that we used to estimate �z—the log
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relative rate of mortality associated with a unit change in
measured ambient concentrations of PM10—directly. The
semiparametric components are smoothing splines used to
describe long-term fluctuations in mortality due to season-
ality, changing population health, and confounding effects
of weather. We first used the model to estimate �z for Balti-
more for the period 1987 to 1994. 

The General Framework subsection for handling the
problem of measurement error includes a description of
the main components of error. Our simple hierarchical
model for Xt given Zt has been incorporated with the log-
linear model to obtain a procedure for estimating �x. This
procedure takes into account the uncertainty arising
because the personal exposures were not observed directly
and ambient levels were used as a surrogate. The results of
our analysis include a comparison with a non-Bayesian
alternative based on a 2-stage regression calibration
approach and an assessment of sensitivity to the prior dis-
tribution and modeling assumptions.

DATA SOURCES

The Baltimore data include daily mortality, tempera-
ture, dew point, and particulate pollution concentrations
for the 8-year period 1987 to 1994 (Figure 1). In addition to
the data for Baltimore, we have assembled data from 5
studies of personal exposure and ambient concentrations
of PM10 (Table 1). The 5 studies had heterogeneous goals,
population characteristics, sampling schemes, observation
periods, and locations as follows:

1. In the Particle Total Exposure Assessment Method-
ology (PTEAM) study (Ozkaynak et al 1996), personal
exposure measurements were recorded for 48 consecu-
tive days (September 22 to November 9, 1990) on some

of 178 selected residents of Riverside, California. At
most, 2 participants were monitored on any given day.

2. In the Harvard study of patients with chronic obstruc-
tive pulmonary disease (COPD) (Rojas-Bracho et al
1998), personal exposure measurements were made
during the winter of 1996 and the winter and summer
of 1997 for a total of 114 nonconsecutive days on
18 COPD patients living in Boston. At most, 4 partici-
pants were monitored on any given day.

3. In the Netherlands study of adults (NETH-A) (Janssen
et al 1998), personal exposure measurements were
made during the fall and winter of 1994, for a total of

Table 1. Study Characteristics, Averages of Personal and Outdoor PM10 Concentrations, and Results of Regression Model 
for Daily Personal PM10 Exposures Versus Ambient (or Outdoor) Concentrations

Study Characteristics

Study

PTEAM COPD NETH-A NETH-C THEES

Number of sampling days 49 114 43 26 14
Number of people 178 18 37 45 14
Number of daily observations 2–8 1–4 1–12 5–15 11–14

Mean personal exposure (µg/m3) 110.58 37.29 60.38 104.55 85.85
Mean ambient exposure (µg/m3) 84.51 23.19 40.82 38.20 60.05

Intercepta (�0
s     ) 59.95 ± 4.1 29.92 ± 2.6 34.17 ± 2.19 85.08 ± 2.88 57.69 ± 8.31

Slopea (�1
s     ) 0.60 ± 0.01 0.33 ± 0.12 0.72 ± 0.13 0.48 ± 0.13 0.45 ± 0.19

a Estimated regression coefficient ± SD.

Figure 1. PM10 (µg/m3), mortality, temperature and dew point for daily
time series on Baltimore for the 8-year period 1987–1994. Solid lines are
smoothing splines with 6 df/year; points are residuals of the raw data with
respect to the smoothing splines.
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43 nonconsecutive days on 37 nonsmoking adults
living in Amsterdam, The Netherlands. At most, 12
participants were monitored on the same day.

4. In the Netherlands study of children (NETH-C) (Janssen
et al 1997), personal exposure measurements were made
in the spring of 1994 and the subsequent fall of 1995, for
a total of 45 nonconsecutive days on 45 children from
4 schools in Amsterdam, The Netherlands. Four to
eight repeated measurements of personal PM10 con-
centrations were obtained for each child.

5. Finally, in the Total Human Environmental Exposure
Study (THEES) (Lioy et al 1990; Mage and Buckley
1995), PM10 personal samples were taken in the
winter of 1988 for a total of 14 consecutive days on 14
nonsmoking individuals in Phillipsburg, New Jersey.
A total of 11 to 14 repeated measurements of personal
PM10 concentrations were taken for each subject.

For the first 4 studies, each had a single outdoor moni-
toring site recording ambient PM10 concentrations for the
entire period, while there were 4 monitors recording data
in THEES. Because the variation in the outdoor PM10 con-
centrations among outdoor sites on a single day was small
in THEES, the daily data have been aggregated by taking
their daily mean.

Table 1 summarizes the 5 studies showing the sampling
schemes, the averages of personal and outdoor PM10 concen-
trations, and the results of a linear regression model for daily
personal PM10 exposures versus ambient (or outdoor) con-
centrations. In all of the studies, mean personal exposures to
PM10 were usually greater than ambient concentrations,
probably because of the influence of indoor sources such as
smoking, cooking, and dust on exposures to particles.

METHODS

LOG-LINEAR REGRESSION OF MORTALITY ON 
MEASURED AMBIENT POLLUTION 
CONCENTRATIONS

In this subsection, we describe time-series models for
investigating the effects of measured ambient concentra-
tions of PM10 on mortality risk. To reestablish notation, Yt,
Xt, and Zt are the observed mortality, average personal
exposure to PM10, and the measured ambient PM10 concen-
tration on day t, respectively. �z is the log relative rate of
mortality associated with a unit increase in Zt, the ambient
concentration of PM10. Here, �z is the target of estimation.
In the general framework for measurement error, the same
model is used with Xt replacing Zt, thus giving inferences
about �x for comparison with those on �z. 

To estimate �z, we use a generalized additive model
(Hastie and Tibshirani 1990) with log link and Poisson error.
We account for seasonal and longer-term fluctuations in
mortality and temperature that can confound the pollution
effects (Samet et al 1995; Kelsall et al 1997) using spline
functions of calendar time and temperature, respectively.
We consider 3 age groups: younger than 65 years old, 65 to
75 years, and older than 75 years. More specifically:

log �t = �0I<65 + �1I65–75 + �2I>75 + �zZt

+ �dowDOW + S1(time, 7/year)

+ S2(temp0,6) + S3(temp1–3,6) 

+ S4(dew0,3) + S5(dew1–3,3)

+ smooth function of time (8 df ) for age group (1)

where �0, �1, and �2 are the age-specific intercepts and
DOW are indicator variables for day of week.

Smooth functions of calendar time S (time, 
) are
included for each city to protect the estimate of pollution
log relative rate �̂Z from confounding by longer-term trends
due to changes in overall health conditions, sizes and
characteristics of populations, seasonality, and influenza
epidemics, and to account for any additional temporal cor-
relation in the count time series. That is, we estimate the
pollution effect using only shorter-term variations in mor-
tality and air pollution. Here, 
 is df for the spline, which
can be prespecified based on epidemiologic knowledge of
the time scale of the possible confounder. For example,
Dominici and colleagues (1999b) set 
 = 7 df per year so
that little information from time scales longer than approx-
imately 2 months is considered in estimating �z. To control
for weather, we fit smooth functions of the same day tem-
perature (temp0), average temperature for the 3 previous
days (temp1–3), each with 6 df, and the analogous func-
tions for dew point (dew0, dew1–3), each also with 3 df. We
also control for age-specific longer-term temporal varia-
tions in mortality, adding a separate smooth function of
time with 2 df per year, for each age-group contrast, to
allow for different long-term trends across the 3 age
groups. We impose a finite-dimensional parameter space
on S(x, 
)�by restricting the choice of the smooth functions
to the space spanned by a finite set of natural cubic splines
on a fixed grid of knots. Each function S(x, 
) can therefore
be rewritten in the linear fashion �

q
j=1Bj(x)�j for some

values �1…�q (Green and Silverman 1994).

Model (1) can be rewritten as follows:

log �t = Wzt
z + Bt�z (2)
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where Wzt = [Zt, I<65, I65–75, I>75, DOW] and 
z = [�z, �0, �1,
�2, �dow]. Here, Bt is the tth row of the design matrix for the
cubic splines and �t is the corresponding vector of coeffi-
cients. Kelsall and colleagues (1997) and more recently
Dominici and colleagues (2000) have used this model to
estimate �z in Philadelphia and in the 20 largest US loca-
tions, respectively.

GENERAL FRAMEWORK FOR MEASUREMENT ERROR

We begin our discussion of measurement error by
reviewing the conceptual framework in the log-linear
regression used for time-series studies of particulate air
pollution and mortality (Zeger et al 1999). The discussion
below is based on the premise that the ideal investigation
of the health effects of air pollution would be conducted at
the individual level with measurement of personal expo-
sures to the pollutants. Exposure and mortality are only
available after aggregation to a municipal level, however;
pollution data from indoor monitoring are not available in
the analysis.

To estimate the log relative rate of mortality for increases
of personal exposure to PM, we would ideally consider a
model

 �it = �0itexp(Xit�x + confounders) (3)

where �it is the individual’s risk of dying on day t; �0it is
the baseline risk for person i when all predictors are 0; Xit
is personal exposure that day; �x is the log relative rate of
scientific interest, and confounders represents all terms in
the log-linear regression model (2) except �zZt. By (3), the
expected total numbers of deaths �t in a community of size
nt is 

�t = �
i
�0itexp(Xit�x + confounders). (4)

In analyzing population-level data on mortality and air
pollution, we have previously used model (2), which esti-
mates �z, the log relative rate of mortality for increases of
ambient concentrations. If the regression coefficient �x in
model (3) is the target of inference, how closely do esti-
mates of �z from model (2) approximate �x?

Because we observe Zt and not Xit, we can write

 Xit = (Xit  � Xt) + (Xt  � Zt) + Zt,

where Xit � Xt is the difference between an individual’s ex-
posure Xit and the population-average personal exposure
Xt, and Xt � Zt is the difference between average personal
exposure Xt and the measured ambient level Zt. If we sub-
stitute this decomposition into equation (4), and limit

attention to first-order terms in a Taylor series expansion,
the expected number of deaths on day t can be approxi-
mated:

 log �t � log(nt�0t) + �x(Xt
(w) �  Xt)

+ �x(Xt � Zt) + �xZt + confounders. (5)

Here nt�0t denotes the total baseline risk in the popula-
tion of size nt, and Xt

(w) is a risk-weighted personal expo-
sure given by Xt

(w) = �
i
�0itXit/�i �0it, and Xt denotes the

unweighted average exposure. The first term, nt�0t, will
vary slowly over time because the population and its
health behaviors cannot change suddenly. The second
term, �x(Xt

(w) � Xt), represents the effect of having aggre-
gated rather than individual data in an ecological analysis
such as ours. It is likely to be small and also to vary slowly
over time t unless high-risk individuals change their expo-
sures to pollutants over the shorter term in response to pol-
lution levels. This, however, is unlikely.

The third error term, �x(Xt � Zt), has the greatest poten-
tial to introduce bias in the estimate �̂z and hence it is the
focus of our analysis in the next subsection. See Zeger and
colleagues (1999) for a more detailed analysis of sources of
measurement error in estimates of air pollution exposure.

Because day-to-day variation in mortality attributable to
air pollution is on the order of 1% or 2% (Kelsall et al
1997), the linear approximation above is reasonable. More
detailed analysis of higher-order terms in the Taylor series
expansion is unlikely to alter the inferences below but may
offer some additional insights for studies of morbidity
where attributable risks could be an order of magnitude
higher.

MODELING MORTALITY AS A FUNCTION OF 
AVERAGE PERSONAL EXPOSURE

The regression methodology used to estimate the mor-
tality-pollution association is extended here by accounting
for measurement error in PM10. We assume that the
ambient measure of PM10, denoted by Zt in (2), is a surro-
gate measure of the average personal concentration Xt
(Carroll et al 1995); that is, Yt is conditionally independent
of Zt given Xt. Our strategy can be described in 2 steps.
First, we model the mortality/personal exposure associa-
tion in a particular location (as in the Baltimore example
below) by the generalized additive model (2) with Xt, the
unknown average personal exposure to PM10, as the key
predictor rather than Zt. We denote the observed and
missing predictors for Baltimore by Zt

B and Xt
B. We then

use 5 additional data sources on average personal
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exposure and ambient concentrations to estimate Xt
B and

�x. Let S = {1,2,3,4,5,B} be the label-set of data sources. The
available data are the mortality counts in Baltimore Yt

B, the
ambient PM10 measures for all the locations Zt

s, s ��S, and
the average personal PM10 exposures for all the locations
X s

t except for Baltimore. We model these data in 2 parts.

The model for Yt
B given Xt

B is specified by

 Yt
B | �t ~ Poisson(�t), t = 1, … T

log �t = Wxt
x + Bt�x (6)

where �t = �t(Xt
B) since Wxt = [Xt

B, I<65t, I65–75t, I>75t, DOW]
and 
x = [�x, �0, �1, �2, �dow].

The hierarchical model for Xt
s given Zt

s is then specified
by

Xt
s = �0

s + �1
sZt

s + �t,�t ~ N(0,� 2
x), s � S

�0
s
 ��0 ~ N(�0,��2

0)��s���S (7)

�1
s
 ��1 ~ N(�1,��2

1)��s���S.

The slope �1
s measures the change in personal exposure

per unit change in measured ambient concentration at
location s. If there is relatively little measured error in the
ambient levels, the slope can be also interpreted as the
fraction of exposure from ambient sources that occurs
either outdoors or through penetration of ambient pol-
lution indoors. The variances �2

x, �2
0, and �2

1 represent the
error in the estimated regression of Xt

s on Zt
s, and the vari-

ability of the regression coefficients �0
s and �1

s across
studies, respectively.

Under this simple linear model, the intercept �0
s repre-

sents personal exposure to particles that does not derive
from external sources but arises from particle clouds gen-
erated by personal activities or unmeasured microenviron-
ments. Because few of the available data sets report
personal and ambient data on several people, we assume
that �0

s and �1
s are constant across subjects within a region.

As more data on personal exposures and ambient concen-
trations become available, however, this model can be
readily extended to a longitudinal regression model with
subject-specific slopes. Doing so in this application has
little effect on the results because the number of subjects
per region is much larger than the number of regions.

PRIOR DISTRIBUTIONS AND COMPUTATION

For a Bayesian analysis with this model, we must
specify prior distributions for all unknown parameters. An
attractive and practical approach in a hierarchical model is

to specify dispersed but proper prior distributions and
then supplement the baseline analysis with additional
sensitivity analyses. A priori, the unknown parameters
were assumed to be independent so that the joint prior is
the product of the marginal of each parameter. For the
overall regression parameters �0, �1, and for the vector of
the log relative rates 
x, we use normal distributions, and
for the variance parameters �2

0,��2
1, and � 2

x we use inverse
gamma distributions. Prior means and 95% intervals of all
the unknown parameters are summarized in Table 2.

Since the data on the association between Xt and Zt are
available from only 5 studies, the prior distribution for �2

0
and �2

1—that is, the variance across cities in the study-spe-
cific intercepts and slopes—has a substantial impact on
our posterior inference. The prior specification for these
parameters has been selected to allow the personal expo-
sure to particles that does not derive from external sources,
�0

s, and the fraction of personal exposure that derives from
measured ambient concentrations, �1

s, to range across a
large set of reasonable values. Later we supplement this
baseline analysis with additional sensitivity analysis.
Under this model, samples from the posterior distribution
of the unknown parameters can be drawn by imple-
menting a block Gibbs sampler (Gelfand and Smith 1990)
with Metropolis steps to draw from the full conditional
distributions of 
z, �z under model (2) and 
x, �x, and Xt

B

under model (3). For 
x and �x, we use a random walk
proposal where we generate each component vector from a
normal distribution centered at the current value of the
parameter and with variance obtained from the output of a
generalized additive model with log link Poisson error.

Table 2. Means and 95% Intervals A Priori and 
A Posteriori of Unknown Parameters

Para-
meters A Priori A Posteriori

�0 50 (�16, 114) 51.6 (32.05, 71.45)

�1
0.5 (�1.5, 2.55) 0.53 (0.21, 0.86)

���
�0(�0 ��1.96��, �0 + 1.96��) 49 (22.71, 73.32)

�B
1

�1(�1 ��1.96��, �1 + 1.96��) 0.60 (0.13, 1.13)

 �x 20 (12, 42) 18.71 (17.17, 20.62)

�� 20 (12, 42) 20.64 (13.53, 32.39)

�� 0.43 (0.27, 0.85) 0.35 (0.23, 0.55)

�x 0 (�10, 10) 1.4 (0.24, 2.88)

�z 0 (�10, 10) 0.9 (0.67, 1.12)



35

JM Samet et al

The same strategy is used to sample 
z and �z. For Xt
B we

use an independent proposal equal to the normal prior dis-
tribution specified by equation (7). Because we will gain
little information about Xt

B from Yt
B, this proposal choice

leads to an efficient strategy.

When �z and �x are high dimensional, the computations
needed for implementing a full Bayesian approach—that
is, to draw from the joint posterior distributions of 
z and
�z and then to integrate over the �z to obtain the marginal
posterior distributions of the�
z—are feasible but extremely
laborious. The computation becomes even more intensive
if we want to make inferences on �x, taking into account
the uncertainty due to the lack of knowledge of Xt

B.

To ease the computational burden, we have approxi-
mated the posterior distributions of 
z and 
x by assuming
�z = �̂z under model (2) and �x = �̂x under model (3), where
�̂z and �̂x are the maximum likelihood estimates obtained
under the generalized additive model with log link and
Poisson error. With these assumptions, the difference
between the marginal posterior distributions of 
z and 
x
obtained under the full Bayesian approach and its approx-
imation (where �z = �̂ )  is small and leads to no meaningful
differences in the inferences on all other unknown param-
eters.

ANALYSIS OF BALTIMORE DATA

In this subsection we analyze air pollution data from
Baltimore, Maryland, using additional information ob-
tained from the 5 epidemiologic studies on personal and
outdoor exposures to PM10. We start by presenting a non-
Bayesian nonhierarchical method based on a regression
calibration approach. We then use the Bayesian hierar-
chical model introduced previously and compare the
results obtained under the two approaches.

REGRESSION CALIBRATION APPROACH

An alternative non-Bayesian method uses the following
2-stage regression calibration. At the first stage, we fit
linear regression models to the 5 validation data sets. We
then estimate the overall intercept and slope �̂0, �̂1 by
using a weighted average for a random effect model—that
is, we average the study-specific intercepts and slopes in
Table 1 with modified weights to take into account the
variability of coefficients among the studies (DerSimonian
and Laird 1986).

We obtain �̂0 = 53.18 and �̂1 = 0.53. At the second stage,
we estimate the average personal exposure time series for the
location of interests as X̂ t

B = �̂0 + �̂1Zt
B, and we use X̂ t

B

instead of Zt
B in the generalized additive model (6). For

Baltimore, we obtain �̂x = 1.67 with 95% confidence interval
(CI) equal to (0.26,  3.21).

HIERARCHICAL BAYESIAN ANALYSIS

In this subsection, we analyze the Baltimore data by
using the hierarchical Bayesian model (6), (7), presented
previously. Model fitting is performed using MCMC
methods. Because of the lack of measurements on personal
exposure in Baltimore, the sampled values of our param-
eter of interest �x are likely to be autocorrelated, resulting
in a chain that slowly converges to the posterior distribu-
tion. To assess convergence, we used the Gelman and
Rubin (1992) diagnostic in Convergence Diagnostics and
Output Analysis (CODA) (Best et al 1995). We run 5 par-
allel chains starting from 5 overdispersed sets of initial
values. We run the chains for 100,000 iterations and save
every tenth value. The value of the shrinkage factor for �x
has a median of 1.01 and 97.5% upper CI equal to 1.03,
suggesting that the 5 chains mix well and may be assumed
to arise from the desired marginal posterior distribution.
The acceptance probabilities for the Metropolis steps for 
x
(and for 
z in model [2]) and for Xt

B were roughly equal to
0.4 and 0.9, respectively. The high acceptance rate for Xt

B

indicates that the mortality data Yt
B is only slightly infor-

mative in the estimate of Xt
B.

Figure 2 gives a summary of posterior inferences on
study-specific regressions for personal concentrations

Figure 2. Summary of posterior inferences on study-specific regressions
for personal concentration versus ambient measures of PM10. The picture
summarizes the point inference of regression coefficients. Each line is the
regression line given by the posterior mean of the overall parameters. Each
regression line is plotted at the range of the study-specific outdoor expo-
sures. The regression line for the Netherlands studies (children) is above
the diagonal, showing an average personal exposure always higher than the
outdoor exposure.
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versus ambient measures of PM10. Each line is the regres-
sion defined by the posterior means of the study-specific
parameters, �0

s, and �1
s. The thicker line is the regression

line defined by the posterior means of the overall parame-
ters �0 and �1. Each regression line is plotted on the range
of the study-specific outdoor exposures. The regression
line for the Netherlands studies (children) is above the
diagonal, showing an average personal exposure that is
always higher than the outdoor concentrations.

Figure 3 shows the posterior distributions of the study-
specific intercepts and slopes, respectively. At the far
right, the posterior distributions of the corresponding
overall parameter values �0 and �1 are pictured. The box-
plots for Baltimore are wider because they incorporate the
uncertainty from lack of knowledge about personal con-
centrations for that location.

Overall, we find that a unit change in ambient concen-
tration is associated with a 0.53 increase in average per-
sonal exposure, and that the intercept has a posterior mean
of 51.6 µg/m3. These results are very close to the estimated
�̂0 and �̂1 of the regression calibration model. The poste-
rior mean and 95% interval of the regression standard
error �x in the estimated regression is 18.71. Posterior
means of � are all close to the estimated regression coeffi-
cients summarized in Table 1. In addition to the posterior
distributions of the regression coefficients for the
5 validation studies, the Bayesian hierarchical model
provides estimates of the regression coefficients �0

B and
�1

B for Baltimore. The estimated marginal posterior means
are 49 and 0.65, respectively. Because the hierarchical
model allows for heterogeneity across studies of �, these
estimates differ slightly from the overall regression coeffi-
cients �̂0, �̂1 estimated under the regression calibration.
The variability of the regression coefficients (intercept and
slopes) between data sources is captured by �0 and �1. The
estimated marginal posterior means are 20.64 and 0.35,
respectively. Means and 95% regions a priori and a poste-
riori of all the unknown parameters are summarized in
Table 2.

Figure 4 displays the estimate of the nonlinear adjust-
ment for the current day temperature. The vertical scale
can be interpreted as the relative risk of mortality as a
function of temperature. The dotted lines are the 95%
confidence interval bands at each given temperature. As
expected, the highest daily mortality mean occurs at the
most extreme temperatures; the minimum level of daily
mortality is reached at 69°F.

Finally, Figure 5 shows the posterior distributions of log
relative rates (percentage increase in mortality for 10 µg/m3

increase in PM10 exposure) of mortality from ambient
exposures �z and from total personal exposure �x. The

posterior means and interquartile range (IQR) of �z and �x
are 0.9, (0.67, 1.12) and 1.4, (0.24, 2.88), respectively.

Note that measurement error tends to bias the results
toward zero and that the IQR of �x is larger than the IQR of
�z. The posterior standard deviation of �x, which is equal
to 0.74, is larger than the posterior standard deviation of
�z, 0.34, for 2 reasons: (1) even if we know with certainty
the correction factor �1

B, the intercept �0
B, and the average

personal exposure time series in Baltimore Xt
B, then the

posterior standard deviation of �x would be roughly equal
to the posterior standard deviation of �z times 1/�1

B; (2) the
IQR of �x also incorporates the uncertainty from estimating
the correction factor and not having the average personal
exposure time series in Baltimore, Maryland.

The estimate of �x is slightly larger under the regression
calibration model than under the Bayesian hierarchical
model, with a substantial overlap of the 2 IQRs. The hierar-
chical model on the study-specific regression coefficients,
�0

s and �1
s, and the estimation approach for the missing

personal exposure to PM10 for Baltimore, Xt
B, contribute to

Figure 3. Boxplots of samples from the posterior distributions of the study-
specific intercepts and slopes. At the far right are the posterior distribu-
tions of the corresponding overall effects. The boxplots for Baltimore are
wider because they incorporate uncertainty due to the absence of personal
concentrations for that location.
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this difference. First, in the regression calibration, we
assume that �0

B and �1
B equal the overall coefficients �̂0 and

�̂1. The hierarchical model incorporates variability in the �
across the studies’ regressions and thus allows �0

B and �1
B to

be different from the population parameters. Second, in the
regression calibration, we estimate Xt

B with a plug-in proce-
dure without accounting for the information from Yt

B.
Under a Bayesian framework, Xt

B is considered to be an
unknown parameter and therefore we estimate its marginal
posterior distribution, p(Xt

B�Yt
B, Zt

B, data), using all avail-
able data.

In summary, the Bayesian model is a more conservative
approach because it takes into account key sources of
uncertainty in the log relative rate �̂x, which results from
estimating the regression coefficients �̂0,�̂1, as well as the
average personal exposure Xt

B. A strength of the Bayesian
model is that it easily provides a quantitative assessment of
the variability across studies in the personal–ambient rela-
tionships by estimating the posterior distribution of the
variance parameters �2

0 and �2
1. In addition, the 2-stage

regression calibration approach does not easily lend itself
to generating ranking probabilities as, for example,
P(�x � �z�data). These advantages come at the cost of
increased computational complexity and of the introduc-
tion of prior information that necessitates further sensitivity
analyses.

MODEL CHECKING AND SENSITIVITY ANALYSIS

Our strategy for investigating the impact of the model
assumptions and the prior distribution on our results is
based on inspecting posterior summaries of �x under the
following scenarios for departure from the hierarchical
model (7), and from the baseline prior distribution.

In the measurement error model (7), one of the most
influential assumptions is likely to be additive Gaussian
error. Hence, we consider the following alternative scenario:

1. in (7), we assume a log normal distribution with mul-
tiplicative error, that is, 

 log(Xt
S) = 
0

S + 
1
S log(Zt

S) + N(0,	2).

The 2 most influential prior parameters in the sensitivity
analysis are the variances across cities in the intercept and
slope of the regression of Xt on Zt, since data are available
for only 5 studies. The alternative scenarios for the sensi-
tivity analyses to the prior distribution are:

2. in the baseline, with the assumption that the vari-
ability across studies in the personal exposure to
ambient is believed to be 2 times higher: B1 = 0.5 � 2;

Figure 5:  Comparison between the relative rates (% increase in mortality
for 10 µg/m3 increase of PM10 exposure), obtained by fitting the semipara-
metric Poisson model having as predictors the ambient concentrations and
the average personal exposures, respectively. The boxplots represent the
posterior distributions of the 2 relative rates (�z, �x).  The posterior means
and IQR of �z and��x are 0.47, (0.1, 0.8) and 0.80, (0.33, 1.60), respectively.

Figure 4. Nonlinear adjustment for the current day temperature. The
vertical scale can be interpreted as the adjusted daily mortality mean as a
function of the temperature. The thinnest lines are the 95% posterior bands
at each given temperature. As expected, the highest daily mortality mean
occurs at the most extreme temperatures; the minimum level of daily mor-
tality is reached at 69°F.
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3. in the baseline, with the assumption that the vari-
ability across studies in the personal exposure to
ambient is believed to be 2 times smaller: B1 = 0.5/2; 

4. in the baseline, with the assumption that the vari-
ability across studies in the indoor exposures is
believed to be 2 times higher: B0 = 1,000 � 2;

5. in the baseline, with the assumption that the vari-
ability across studies in the indoor exposures is
believed to be 2 times smaller: B0 = 1,000/2; and

6. in the baseline, with the assumption that the prior
mean of �x is believed to be equal to the regression
calibration estimate: E[�x] = 1.67. 

Figure 6 shows the marginal posterior distributions of �x
and the posterior probabilities that �x  > �z under our base-
line model and under the 6 alternative scenarios. The pos-
terior probabilities of �x ���z, posterior means, and IQR of
�x are quite stable under all scenarios, revealing that the
hierarchical model is not very sensitive to model assump-
tions and the prior distributions.

DISCUSSION

Findings of air pollution–mortality studies figure prom-
inently in the development of environmental public
policy. Hence, a better understanding of the consequences
of the measurement error in air pollution studies is needed
(Thomas et al 1993; Zidek et al 1998; Zeger et al 1999). We
have developed a hierarchical measurement error model to
combine information about the relationship of mortality to
ambient air quality measures and the association of
ambient concentrations and personal exposures to particu-
late pollution exposure. Our model combines 2 sources of
information to estimate the coefficient �x, which measures
the relative increase in mortality per unit increase in per-
sonal exposure to PM10. Like every statistical model, this
one is an approximation of reality, designed to make effec-
tive use of the available information about �x.

We have estimated both �z and �x in Baltimore. The
parameter �x describes the effect of personal exposure to
particulates on the risk of mortality, as discussed in section
3. It is of direct biologic and etiologic interest. If ambient
concentrations Zt are measured precisely, �z represents the
expected proportional change in mortality in a population
given a unit reduction in ambient air pollution levels.
Since, in most countries, governments attempt to regulate
ambient concentrations rather than personal exposures, �z
is of direct interest to regulators. In the models presented
here, �z can be estimated directly from the available data Yt
and Zt for a city such as Baltimore. We depend on auxiliary

information and modeling assumptions to estimate �x.
Nevertheless, it is useful to have an estimate of the bias
arising from using ambient levels rather than personal
exposures, even if that estimate is dependent on assump-
tions. Heterogeneity in this bias across locations is likely,
and it is relevant to assessing the external validity of
regression findings in a particular location.

It is also useful to have an estimate of the effect of per-
sonal exposure to ambient measurements on the risk of
mortality. Although such an estimate must take into
account the different sources of emissions, we can give a
partial answer for Baltimore by inspecting the posterior
distribution of �x � �1

B. The posterior mean and IQR of this
parameter is 0.79, (0.56, 1.02), which is close to our direct
estimate of the posterior distribution of �z.

The strengths of our analysis are that

1. it extends regression calibration, giving a more con-
servative result because it takes into account mor-
tality data Yt

B and all the key sources of uncertainty in
the log relative rate �̂x; 

2. it easily provides a quantitative assessment of the
variability across studies in the personal–ambient
relationships;

3. it lends itself to generating ranking probabilities as,
for example, P(�x � �z�data); and

4. the results do not appear sensitive to alternative mea-
surement error model assumptions and specifications
of the prior distribution within a reasonable range.

Figure 6. Posterior distributions of �x under the 6 alternative scenarios. At
the top are shown the posterior probabilities that �x � �z. B = baseline.
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One important limitation of the current formulation is
the modeling of the association between ambient and
average personal exposure. Given extensive daily ambient
exposure data, a time-series model of Xit on Zt would be
more appropriate than the simple linear models we used.
In the PTEAM data, we do have 48 consecutive days of
both ambient and average personal exposure levels and
have examined whether their association is identical at all
time scales, as assumed by our linear model. In fact, we see
some evidence that the association is stronger at longer
time scales, suggesting that a time-series model might
improve on the analysis presented here. But the PTEAM
study is the only one with time-series data and even these
data are limited in duration, making additional explor-
atory analysis difficult. Extensions of our model to allow
for time-series structure in the exposure component can be
easily implemented, given time-series data at several sites.
A desirable extension of our model would be to allow het-
erogeneity across studies of the regression variances. In
Baltimore, however, because Xt

B is unknown, such vari-
ance is not identifiable.

Another limitation is that our measurement error anal-
ysis is for a single pollutant, PM10. An important and
needed extension would be the case of multiple pollut-
ants—for example, PM10, NO2, SO2, and CO, all combus-
tion products—which are correlated and simultaneously
measured with correlated errors. Zidek and colleagues
(1996) and Zeger and colleagues (1999) have investigated
the effects of measurement error in regression analyses
when explanatory variables are correlated and measured
with errors. Currently, we are unaware of empirical studies
that have measured multiple pollutants for individuals
and at central sites simultaneously. Our model extends
naturally to the multipollutant case when such data
become available in the near future.
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Section 3: Mortality Displacement–Resistant Estimates of Air Pollution Effects 
on Mortality

Scott L Zeger, Francesca Dominici, and Jonathan M Samet

ABSTRACT

A number of studies have recently shown an association
between particle concentrations in outdoor air and daily
mortality counts in urban locations. In the public health
interpretation of this evidence, a key issue is whether the
increased mortality associated with higher pollution levels
is restricted to very frail persons for whom life expectancy
is short in the absence of pollution. This possibility has
been termed the harvesting or mortality displacement
hypothesis. We present an approach to estimating the asso-
ciation between pollution and mortality from time-series
data that is resistant to short-term mortality displacement.
The method is based in the concept that mortality dis-
placement alone creates associations only at shorter time
scales. We use frequency domain log-linear regression
(FDLLR)* to decompose the information about the pollu-
tion-mortality association into distinct time scales, and we
then create mortality displacement–resistant estimates by
excluding the short-term information that is affected by
mortality displacement. We illustrate the methods with
total suspended particles (TSP) and mortality counts from
Philadelphia for 1974 to 1988. We show that the TSP-mor-
tality association in Philadelphia is inconsistent with the
mortality displacement–only hypothesis and that the mor-
tality displacement–resistant estimates of the relative risk
of mortality associated with TSP are actually larger, not
smaller, than the ordinary estimates.

INTRODUCTION

The acute effects on morbidity and mortality of extreme
episodes of particulate air pollution have been well docu-
mented by the 1952 London fog and other air pollution
disasters (Beaver 1953). More recently, acute health effects
have been associated with fluctuations in particulate air
pollution well within the US Environmental Protection
Agency (EPA) standards (1995, 1996). Substantial evi-
dence has accumulated over the last decade in support of
associations of daily levels of air pollution with mortality
counts and with measures of morbidity. Bascom and col-
leagues (1996a,b) and Dockery and Pope (1994) provide
overviews of this new literature. Samet and colleagues
(1995) have conducted reanalyses and critically evaluated
the pioneering work by Schwartz and Dockery (1992) and
largely confirm an acute association between mortality
and particulate air pollution.

Nevertheless, uncertainty remains regarding the public
health implications of these findings. First, controversy
remains about whether a single constituent of air pollution
is responsible for the increased mortality and morbidity or
whether the adverse health effects are caused by combined
actions of multiple pollutants (Samet et al 1997). Even if a
single constituent of the mix of pollutants in urban air,
such as small particles, is largely responsible for in-
creasing morbidity and mortality, a second question arises:
is the increase in mortality only among extremely frail
individuals whose remaining life expectancy, in the
absence of pollution, would be short? That is, are only a
small number of total days of life lost from pollution, or are
individuals dying who would otherwise have survived for
substantial periods? The possibility that only extremely
frail individuals die from exposure to air pollution has
been termed the harvesting hypothesis (Schimmel and
Murawski 1976), a phenomenon also referred to as mor-
tality displacement.

One approach to investigating the possibility that only
frail individuals are affected by air pollution uses a com-
partmental model. In the simplest frailty model, the death
process is assumed to have 2 steps. First, an individual
moves from a relatively healthier population into a very
frail subgroup from which all mortality occurs. In the

* A list of abbreviations and other terms appears on page 13.
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second transition, persons in this frail pool die; the risk of
dying increases at higher pollution levels. If the size of the
pool of the frail persons is small, then the mean residency
time in the frail condition is short, regardless of the expo-
sure to pollution. In this case, mortality displacement can
occur because persons in the frail pool have a short life
expectancy in the absence of pollution. On the other hand,
if the size of the frail population is large, the mean resi-
dency time in the frail state is relatively long, so that pol-
lution-caused deaths substantially shorten life. More
realistic extensions of this simple 2-compartment model—
for example, to include 3 states: healthy, diseased, and
highly frail—can be developed, but they would capture the
mortality displacement principle in a similar way.

The evidence available in mortality time-series data to
assess whether mortality displacement occurs is found in
the pattern of mortality following days with a large
number of deaths. If the frail subpopulation is small and if
deaths can occur only from this pool, then the number of
deaths on a day after a pollution event will be fewer than
expected because the previous high mortality depletes the
pool of at-risk frail individuals. Hence, we would expect a
negative autocorrelation between the number of deaths on
a day after a pollution episode and a day before that epi-
sode (Lipfert and Wyzga 1995).

A few investigators have developed statistical models
using the ideas above to estimate the size of the frail popu-
lation and the expected days of life lost due to exposure to
air pollution. Smith and colleagues (1997) used a 2-com-
partment model as described above with the additional
assumption that both the risk of becoming frail and the risk
of death may depend on air pollution.

In this section, we take a different approach to the mor-
tality displacement issue. Rather than attempting to esti-
mate directly the degree of mortality displacement, we
propose a class of estimators of the pollution-mortality
association that is resistant to shorter-term mortality dis-
placement. That is, we propose an approach that ignores
the information in the time-series data in which short-term
mortality displacement would influence the mortality-pol-
lution association. With this approach, pollution relative
risks are close to unity if the association is due to mortality
displacement alone. The method is based on partitioning
both the pollution and mortality time-series data into com-
ponents with variation occurring at different time scales
and then relying on the longer-term components to esti-
mate the effect of pollution on mortality.

First, we propose a simple, 2-compartment model for
mortality displacement and demonstrate that mortality
displacement produces correlations between mortality
and pollution data that are nonnegligible only at short time

scales. Then we review briefly an approach to time-series
modeling of the mortality–air pollution association that
gives separate estimates of the pollution effect at different
time scales. Kelsall and colleagues (1999) describe this
FDLLR in detail. We next propose a mortality displace-
ment–resistant estimator that sets aside the short-term
associations that are subject to the influence of mortality
displacement. Further, we apply this method to the anal-
ysis of particulate air pollution and mortality data from
Philadelphia for the period 1974 to 1988, which were pre-
viously analyzed by several investigators (Kelsall et al
1997; Samet et al 1997).

SIMPLE MODEL FOR MORTALITY 
DISPLACEMENT

The simplest model that captures the mortality dis-
placement phenomenon is based on the assumption that
individuals in the general population transition into a very
frail subgroup, and that death occurs only among this frail
subpopulation. This idea can be implemented in the fol-
lowing difference equation Nt = Nt–1 – Dt–1 + It, where Nt is
the size of the frail population, It is the number of new per-
sons from the general population who become frail at the
start of day t, and Dt is the number of deaths. This equation
simply states that the frail population on day t comprises
those frail individuals less the number of deaths from the
previous day plus the newly frail. Hence on days following
a large number of deaths, the very frail population at high
risk of pollution-induced death is reduced and fewer
deaths can result.

Given Nt frail persons on day t, we assume that each
person independently experiences a daily hazard of death

t, where the log-odds of death depends linearly on the
pollution value xt. Finally, we assume that there is an
effectively infinite total population, and that the number
of persons, It, that enter the frail subpopulation at the start
of day t follows a Poisson distribution with mean

 �I(I*t�� 1_ 
�I )

�

,

where I*t–1 is either the number of entrants from the pre-
vious day or a small positive constant if It–1 = 0. This
model for It allows the number of persons entering the frail
state on a given day to depend on the number that entered
on the previous day, introducing some positive autocorre-
lation (when � > 0) that might reflect the influence of such
events as influenza epidemics or stretches of bad weather
(Zeger and Qaqish 1988). We assume that the long-term
average of persons entering the frail subgroup E[It] and the
long-term average of the frail persons dying per day E[Dt]
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are equal, so the population neither grows nor shrinks in
the long run. Finally, to initiate the mortality Dt and frailty
Nt time series, we assume that the number of persons at
risk on the first day follows a Poisson distribution with
mean equal to the long term average E[Nt].

To demonstrate that mortality displacement induces
associations between mortality and pollution only at short
time scales, we have generated 3 long (Nt, Dt) series, which
represent different degrees of mortality displacement. We
chose the parameter values in Table 1 so that the mean
number of deaths per day is 50, similar to the Philadelphia
data, and the mean residence times (MRTs) in the frail state
are 3, 30, or 300 days. The log-relative risk of mortality
associated with particles was 0.05 for all scenarios. These
data were generated in a simulated example using the TSP
series from Philadelphia for 608 days during the period
1980 to 1994 for xt, with 100 repetitions to create the sim-
ulated series of length 60,800.

Figure 1 displays the association, as measured by the
squared correlation (coherence) between the number of
deaths (square root transformed) �Dt��  and particle measure-
ment xt as a function of time-scale, for the 3 mortality
displacement scenarios. These plots were generated by
cross-spectral analysis (Bloomfield 1976). Note that in all
3 situations the correlation becomes nonnegligible only at
time scales that are less than about twice the MRT. Hence,
we see that mortality displacement induces association
between mortality and pollution only at shorter time scales.

In the next 2 subsections, we review our approach to
estimating the mortality-pollution association separately
at multiple time scales and then use that approach to pro-
duce estimates of pollution relative risks that are resistant
to mortality displacement by ignoring the short-term infor-
mation that can be influenced by mortality displacement.

FREQUENCY DOMAIN LOG-LINEAR REGRESSION

The main idea of FDLLR is to decompose both the air
pollution series xt and the mortality series (hereafter
referred to as yt) into distinct component series xkt and ykt,
one pair for each of many distinct time scales k, and to cal-
culate the association separately between xkt and yt for
each time scale.

Figure 2 shows such a decomposition into 5 time
scales—that is, roughly, year, season, month, week, day—
for the TSP and mortality series from Philadelphia for the
period 1974 to 1988. Note the top series comprise only the
longest-term fluctuations, while the bottom series repre-
sents the shortest-term variations. The actual value of xt
(or yt) on day t is obtained by summing the values of the 5-
component series on that day. This type of decomposition
can be obtained by smoothing with successively shorter
running averages.

Frequency domain log-linear regression estimates a sep-
arate coefficient �̂� by regressing each yt component on its
corresponding component xt giving a sequence of regres-
sion coefficients, for example, �̂�, �̂�, �̂	, �̂
, and �̂��in this 5-
component illustration.

The actual implementation of FDLLR uses a Fourier
series decomposition of the xt and yt series and produces a
smooth pollution-mortality log-relative risk function �̂� of
the time scale or, equivalently, the frequency: k cycles in
the total period of observations, rather than estimates at
only 5 or some other small number of time scales. Kelsall
and colleagues (1999) give a detailed description of FDLLR.

Table 1. Parameter Values for Simulated Example

Parameter

Mean Residence Time

3 Days 30 Days 300 Days

E[Nt] 150 1,500 15,000
E[It] 50 50 50
E[Dt] 50 50 50
00 ��.69 �3.36 �5.70
01 0.05 0.05 0.05
a 0.80 0.80 0.80
C 1 1 1

Figure 1. Estimated squared coherency between each pair of  �Dt��  and xt.
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MORTALITY DISPLACEMENT–RESISTANT 
ESTIMATES OF MORTALITY-POLLUTION 
RELATIVE RISK

As we demonstrated above, mortality displacement will
affect only  �̂� for large k, say k > K. In the simulation study
we set the time scale k equal to twice the mean residence
time in the frail state. Under the hypothesis that mortality
displacement is the only cause of the pollution-mortality
association, we would expect �̂� to be near 0 at low fre-
quencies (when k is small) and to increase in absolute

value toward higher frequencies (shorter time scales). A
plot of �̂� versus k is therefore informative with regard to
the mortality displacement hypothesis. We can also calcu-
late a single mortality displacement–resistant estimator of
� by taking an appropriately weighted average of the �̂� for
1 � k � K, ignoring information at higher frequencies. The
estimator is specifically defined as:

�̂� = (�k � Kwkx̄kxk)�1(�k � Kwkx̄kzk) (1)

where xk and zk are the discrete Fourier transforms of xt
and of the linearized response zt used in generalized linear

Figure 2. Decomposition into 5 component series for the mortality and TSP (µg/m3) series (on squared root scale) from Philadelphia for the period 1974 to
1988.  Each plot represents the residual time series with respect to the previous component.
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models (Zeger and Qaqish 1988), �wk
�1 = Var(zk), and x̄ t is

the complex conjugate of x.

Many pollution-mortality analyses use daily time-series
data (Kelsall et al 1997). With series of n days, the possible
values of k range from 1 to n/2 complete cycles in n days
corresponding to frequencies: 1 cycle in n days to 1 cycle
in 2 days. We seek a mortality displacement–resistant esti-
mator that ignores the �̂

�
 corresponding to periods shorter

than about twice the MRT in the frail state. We showed
above that, under a simple model, the pollution-mortality
associations are negligible at the remaining time scales
when mortality displacement is the only source of this
association.

When our mortality displacement–resistant estimator is
applied to the simulated data with K corresponding to
twice the mean residence time, the estimated pollution
effect is close to 0 in all 3 cases.

Table 2 shows the fraction of the total frequencies corre-
sponding to the shorter-time scales that must be ignored to
protect against mortality displacement for various values
of the MRT in the frail state given daily time-series data. A
large fraction of the available information is affected by
mortality displacement. Nevertheless, the remaining infor-
mation at the longer frequencies can be used to estimate
the pollution-mortality association without being biased
by short-term mortality displacement, as illustrated for
Philadelphia.

APPLICATION TO PHILADELPHIA DATA

To illustrate our method, we consider mortality and air
pollution in Philadelphia for the years 1974 to 1988. The
data set is the same as that used by Samet and colleagues
(1997). In addressing the mortality displacement question,
we implement our FDLLR while adjusting for temperature,
dew point, and longer-term trends associated with factors
such as changes in medical practice, demographics, and
influenza epidemics. The adjustment is actually imple-
mented using smoothing splines (Hastie and Tibshirani
1990) with 6 degrees of freedom (df) for temperature and
dew point and with 90 df for time, respectively. The
adjustment is similar to but not identical to those by Samet
and colleagues (1997), who used 120 df for time and
included day of the week as well.

Our goal is to calculate estimates of the pollution-mor-
tality association in time-series data that sets aside, or
ignores, information affected by mortality displacement.
We first apply the FDLLR methods that estimate the pol-
lutant-mortality association separately at each time scale.

On the left of Figure 3 we show the time-scale-specific
estimates of the mortality relative risk associated with TSP
by time scales. The horizontal axis is the time scale in days
at which the association is measured. The solid and dotted
lines are the estimated log-relative risks ±2 estimated stan-
dard errors, respectively, at each time scale. The plot is
scaled to show the expected change in mortality corre-
sponding to a change of 1 interquartile range (IQR) in TSP.
On the right of Figure 3, we show the estimated mortality
displacement–resistant effects of TSP on mortality as suc-
cessively more of the shorter-term information is removed.
The estimate at a particular time scale is calculated disre-
garding information in the left-hand panel at all shorter
time scales.

Note that the pattern in the left panel is the opposite of
the expectation under the mortality displacement hypoth-
eses. The pollution relative rate is substantially different

Figure 3. Time-scale (frequency) specific and cumulative estimates of the log-
relative risk for mortality associated with current-day total suspended particles
versus time scales in days estimated from daily time-series data from Philadel-
phia for 1974 to 1988. The solid and dotted lines are the estimates ±2 estimated stan-
dard errors. To the left of the cumulative estimates plot, mortality displacement–
resistant estimators correspond to a mean residence time of 2 days and 4 days, respec-
tively. The cumulative estimates at a certain time scale K (days/cycle) is calculated
disregarding time scales shorter than K.

Table 2. Fraction of Frequencies Whose Corresponding 
Periods Are Shorter Than Twice Mean Residence Time 
(MRT) in Frail State

MRT (Days) Frequencies to Ignore (%)

2 50
4 75
8 87.5

16 93.75
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from 0 at low frequencies, and in fact, decreases rather than
increases toward shorter-term frequencies. This pattern is
opposite to what is expected under the mortality dis-
placement–only hypothesis. The mortality displacement–
resistant estimators corresponding to MRTs of 2 and 4 days
are 0.022 (95% CI, 0.012 to 0.032) and 0.024 (95% CI, 0.015
to 0.033), respectively, indicating that the association
between TSP and mortality reflects factors other than mor-
tality displacement alone. Figure 3 reformats the informa-
tion in Figure 2 into cumulative estimates that set aside
varying amounts of the short-term information—moving
from left to right, the estimate falls as increasing amounts
of short-term data are used.

DISCUSSION

The method we present can be approximated by using
filtering techniques to split the pollutant and mortality time
series into components that have variations on distinct time
scales, as was done in Figure 2. A log-linear regression of
the component mortality on the corresponding component
pollution series can be performed to obtain a separate rela-
tive-risk estimate for each component pair. Our method has
the advantage of giving relative-risk estimates that are con-
tinuous functions of time scale rather than providing only a
few discrete values. It also provides valid CIs that are not
directly available from log-linear regression programs.

In the current implementation of our mortality displace-
ment–resistant estimator, we fix the time lag between the
pollution-exposure and mortality, rather than estimate it
from the data. Hence, it is advisable to consider multiple,
reasonable lags. For Philadelphia, the results were qualita-
tively the same when the TSP were lagged 0, 1, 2, or 3 days.

In gauging the public health significance of the evidence
from the daily time-series studies, we find that the extent
of mortality displacement has been a major point of con-
troversy. With little evidence of significant life shortening,
the findings from the time-series studies may not warrant a
regulating response. In the recent standard-setting process
for particulate matter, 2 cohort studies have figured prom-
inently because their findings indicate longer-term effects
(Dockery et al 1993; Pope et al 1995). Using a new analytic
approach, our reassessment of the Philadelphia data indi-
cates that the previously reported associations between air
pollution indicators and mortality cannot be attributed
solely to mortality displacement. This analytic approach
should be extended to additional data sets to assess the
consistency of our findings in Philadelphia.
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Section 4: Mortality Displacement and Long-term Exposure Effects 
Related to Air Pollution and Mortality

Joel Schwartz

ABSTRACT

Although time-series analyses have demonstrated that
airborne particles are associated with early death, these
analyses have not clarified by how much the deaths are
advanced. If all of the pollution-related deaths were
advanced by only a few days, one would expect little asso-
ciation between weekly averages of air pollution and daily
deaths. I used the STL (seasonal and trend decomposition
using LOESS [locally weighted smoother])* algorithm to
resolve air pollution, daily deaths, and weather from
Boston into 3 time series: one reflecting seasonal and
longer fluctuations, one reflecting short-term fluctuations,
and one reflecting intermediate patterns. By varying the
cutoff between short term and intermediate term, it was
possible to look at mortality displacement on different
time scales. For chronic obstructive pulmonary disease
(COPD), there was evidence that most of the mortality was
displaced by only a few months. For pneumonia, heart
attacks, and all causes of mortality, the size of the effect
increased at longer time scales. The percent increase in all
deaths associated with a 10 µg/m3 increase in particulate
matter less than 2.5 �m in aerodynamic diameter (PM2.5)
increased from 2.1% (1.5–4.3) to 3.75% (3.2–4.3) as the
focus moved from daily to monthly patterns. This is con-
sistent with the larger effect seen in prospective cohort
studies, rather than mortality displacement playing a
major role.

INTRODUCTION

A large body of literature has shown associations
between particulate air pollution and daily mortality and
morbidity (Bates and Szito 1987; Pope 1989; Fairley 1990;
Schwartz and Marcus 1990; Pope et al 1991, 1992, 1995a;
Schwartz 1991, 1993a, 1994a,b,c,d, 1995b, 1996, 1997;
Schwartz and Dockery 1992; Schwartz et al 1993, 1996;
Spix et al 1993; Sunyer et al 1993; Burnett et al 1994; Thur-
ston et al 1994; Schwartz and Morris 1995; Verhoeff et al
1996; Anderson et al 1997; Katsouyanni et al 1997; Zeger
et al 1999). These associations have been shown in loca-
tions or seasons where O3 and SO2 concentrations were
essentially nonexistent, making confounding by these
other pollutants implausible (Schwartz 1995a). As a result,
national and international bodies (Expert Panel on Air
Quality Standard Particles 1995; US Environmental Pro-
tection Agency [EPA] 1997; World Health Organization
1997) have concluded that these associations should be
treated as causal and have recommended implementing
tighter standards. Although the association between PM
and daily mortality is generally accepted, considerable
controversy exists about the extent to which deaths are
advanced by higher air pollution levels. Some have argued
that it is inappropriate to use the regression coefficients
from these studies to estimate the attributable risk of air
pollution because it is not clear how many of the deaths
occur only a few days early in individuals who are already
dying (McMichael et al 1998). This is usually referred to as
harvesting or mortality displacement. If all of the deaths
associated with particulate air pollution were being dis-
placed by only a few days, this would obviously have
implications for the extent of public health concern that
should be given to the associations.

On the other hand, the existing studies have examined
the association of air pollution exposure on mortality and
morbidity only on the same or past few days. Exposure of
animals to combustion particles indicates that they pro-
duce inflammatory damage in the lung at least partially by
the generation of oxidants (Gilmour et al 1996; Li et al 1996;
Pritchard et al 1996; Costa and Dreher 1997). This suggests
that exposure over time intervals of weeks may have some
additional cumulative effect that is not captured in the

* A list of abbreviations and other terms appears on page 13.

The National Morbidity, Mortality and Air Pollution Study: Methods and
Methodologic Issues, Part I of Health Effects Institute Research Report 94,
includes an Investigators’ Report, a Preface, a Commentary by the Health
Review Committee, and an HEI Statement about the research project. Cor-
respondence concerning this section may be addressed to Dr Joel Schwartz,
Department of Environmental Health, Harvard School of Public Health,
665 Huntington Avenue, I-1414, Boston MA 02115-6021.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award R824835
to the Health Effects Institute, it has not been subjected to the Agency’s
peer and administrative review and therefore may not necessarily reflect
the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by
private party institutions, including those that support the Health Effects
Institute; therefore, it may not reflect the views or policies of these parties,
and no endorsement by them should be inferred.
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current short-term regression analyses. Further, studies
showing that air pollution is associated with increased
severity of illness (Bates and Szito 1987; Pope 1989; Pope et
al 1991; Schwartz et al 1993; Sunyer et al 1993; Burnett et
al 1994; Schwartz 1994a,b,c, 1995b, 1996, 1997; Thurston
et al 1994; Schwartz and Morris 1995; Anderson et al 1997)
suggest that it can increase the pool of persons at high risk
of dying (by moving people from moderate to severate ill-
ness) as well as deplete it. The net effect on the size of the
susceptible pool is not clear a priori. Finally, prospective
cohort studies of particulate air pollution and daily deaths
(Dockery et al 1993; Pope et al 1995b) have reported sub-
stantially larger effects of long-term exposure to, for
example, 10 µg/m3 of fine particles than are indicated by
the daily time-series studies. Those authors have suggested
that the difference may represent an effect of chronic expo-
sure. Section 4 seeks to examine how the association
between particulate air pollution and mortality and mor-
bidity varies as the time scale of the exposure varies.

DATA

Mortality data came from Boston for the years 1979 to
1986 as described previously (Schwartz et al 1996). Briefly,
between 1979 and 1986, dichotomous virtual impactor
samplers were placed at a central, residential monitoring
site in the Boston metropolitan area as part of the Harvard
Six Cities Study. Separate samples of fine particles (PM2.5)
and coarse mass (CM) were collected. This analysis is
restricted to the fine particle data. Daily deaths were
extracted from annual detail mortality tapes from the
National Center for Health Statistics (NCHS) for the same
time period, for Norfolk, Suffolk, and Middlesex Counties,
which are the metropolitan counties proximate to the mon-
itor. Deaths due to accidents and other external causes
(ICD-9 800–999) were excluded. Separate counts were com-
puted for deaths from ischemic heart disease (IHD) (ICD-9
410–414), congestive heart failure (ICD-9 428), pneumonia
(ICD-9 480–486), and COPD (ICD-9 490–496). Meteorologic
data were obtained from the National Center for Atmo-
spheric Research. The hourly measures were collapsed
over 24-hour periods to provide a mean value for tempera-
ture and dew point. The initial paper reported an associa-
tion between daily deaths and the average of air pollution
on the same and previous days. The association was seen
after control for weather (using nonparametric smooth
functions of temperature and humidity) and for season
(using a nonparametric smooth function of time with a
smoothing window of about 125 days). It also examined
how the association differed among different particle mea-
sures, which is not the topic of this analysis.

METHODS

If air pollution were advancing deaths by only a few
days, then we would expect an increase in daily deaths
due to air pollution to be followed shortly by a decline. If
we averaged over a week, the 2 effects would cancel each
other out (or partially cancel each other out if some of the
deaths are brought forward by a longer period). Put
another way, the association between air pollution and
daily deaths would be concentrated in high-frequency
fluctuations, those with periods of only a few days. A mul-
tiday average of daily deaths would no longer be associ-
ated with air pollution, since the air pollution effect and
the rebound from it would have been smoothed over by the
averaging. If we can separate the correlation between air
pollution and daily deaths into characteristic frequency
ranges, the existence of an association at lower frequencies
would demonstrate that all of the air pollution–associated
deaths are not being advanced by only a few days. This is
the basis of the analysis. In contrast, if there are cumula-
tive effects of exposure that are not captured in the daily
regression analyses, or if air pollution increased the pool
of susceptible individuals, the association between longer
period fluctuations in air pollution and daily deaths
would be stronger than in the original analysis. By exam-
ining this association in different frequency ranges, one
can examine the existence of mortality displacement and
effects of longer-term exposure on a range of time scales
from a few days to a month or two. Examination of much
longer time scales is difficult because of the need to con-
trol for season.

Cleveland’s STL algorithm (Cleveland et al 1990) was
used to separate the time series of daily deaths, air pollu-
tion, and weather into long wavelength components (repre-
senting time trends and seasonal fluctuations), midscale
components, and residual very short time scale compo-
nents. This analysis uses the midscale components of each
time series to assess the association between air pollution
and mortality on that scale, having removed the potentially
confounding effect of season (long scale) and the compo-
nent susceptible to short-term mortality displacement
(short scale). The STL uses LOESS smoothing to separate
the series into these components.

All analyses used the same cutoff for the long wave-
length component. A LOESS smooth with a window of
120 days was used to fit and remove the seasonal and long-
term time trends. The LOESS smooth uses a weighted
moving regression within the 120-day window to estimate
the seasonal component of variation for each time series
(ie, deaths, PM2.5, temperature, and dew point). The
weights decrease to 0 at the ends of the window as the



53

JM Samet et al

cube of the fraction of the distance from the center to the
end (see Appendix A), and are near 1 for only about the
central 40% of the window. Hence the effectiveness of a
120-day window in a LOESS smooth at removing long
wavelength patterns is similar to a simple unweighted
moving average of about 60 days. The LOESS smooth is
preferred because the weighted smoothing produces less
distortion in the high-frequency components. Smaller
window sizes (eg, 90 days) induce short-term serial corre-
lation in the data that is not present in the original series.

Because the goal of the analysis was to examine the asso-
ciation in different frequency ranges, several different mid-
scale components were examined separately. These
midscale smoothing windows were 15, 30, 45, and 60 days.
For each midscale window, the analysis was repeated,
removing the seasonal and the short-term patterns from the
data. Regression analysis was then performed among the
midscale variations in deaths, pollution, and weather, for
each of the 4 choices of midscale variation.

To maintain comparability with the original study, the
same generalized additive model and choice of lags was
used in these analyses. A log-linear regression was fit
relating the logarithm of the filtered daily deaths (with the
mean added back) to LOESS smooth functions of tempera-
ture, dew point, and a linear PM2.5 term, for each of the
different midscale frequency ranges. The smooth functions
of temperature and dew point used approximately 5
degrees of freedom (df) each (see Appendix A for more
details). The results for each of these windows were com-
pared with results in the original regressions. This allows a
comparison of the size of the effects as we sequentially
exclude longer and longer term mortality displacement
from the analysis.

RESULTS

Table 1 shows the mean and standard deviations of the
environmental and mortality data in Boston. Air pollution
levels were low to moderate. Total deaths averaged 60.
Figure 1 shows the 120-day LOESS smooth, which appears
to capture seasonal variation and some shorter-term struc-
ture in the mortality data. Figure 2 shows the residuals
after removing this pattern from the mortality data, con-
firming that no seasonal pattern was left in the data. In
fact, the partial autocorrelation function was reduced to
white noise by a 150-day LOESS smooth, and the 120-day
window was used to be conservative. Figure 3 is an
example of what data filtered in such a manner look like. It
shows the residual daily deaths from IHD, after removing
both seasonal and short-term fluctuations, over time. The
mean is 0 in the figure, but the mean was added back in to

Table 1. Mortality and Environment in Boston, 1979 to 
1986

Mean ± SD

Mortality
All causes 60.0 ± 9.6
Pneumonia 2.7 ± 1.9
COPD 1.4 ± 1.4
IHD 17.9 ± 5.3

Environment
Temperature (°C) 10.6 ± 9.6

15.6 ± 9.2PM2.5 (µg/m3)
Dew point (�C) 4 ± 10.7

Figure 1. Results of the 120-day window LOESS smooth function of daily
deaths in Boston over time for the period 1979 to 1986. This smooth was
removed from the data to control for season and trend in all of the analyses.

Figure 2. Residual mortality after seasonal control. Shows the residuals of 
the seasonal smooth in Figure 1. No seasonality is apparent in the residuals.
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perform the log-linear regressions. Figure 4 shows the esti-
mated increase in death from COPD (and 95% confidence
interval [CI]) associated with a 10 µg/m3 increase in PM2.5
(from Schwartz et al 1996) and with each of the 4 filters.
Figures 5 and 6 show the same thing for pneumonia and
IHD deaths. These 3 cause-specific plots illustrate dif-
ferent patterns of association.

The results for COPD show a pattern similar to what has
been hypothesized about mortality displacement. The
effect size first increases when a 15-day smoothing window

is used, and then decreases to 0 by the 60-day smoothing
window. This suggests that the deaths from COPD are being
advanced by only a few weeks to a few months. 

Pneumonia, in contrast, shows some sign of short-term
mortality displacement, with a lower effect size with a 15-
day smoothing window, but then the effect size grows to
more than twice the original estimate by the time a 60-day
smoothing window is reached. This pattern is not consis-
tent with most of the deaths being advanced by a few days
to few months.

For IHD deaths, the effect size is unchanged when using
the 15-day window. For larger averaging windows, the
effect size increases monotonically. For the 60-day
window, which focuses the association on correlations
with a 30-day to 100-day time scale, the effect of air pollu-
tion is almost twice as great as in the original regression.

The results for all-cause mortality most strongly
resemble those for IHD. The 15-day smoothing window
results in little change, but the effect size then increases
steadily with increasing averaging times. This is indicated
in Figure 7.

DISCUSSION

The findings in Boston provide some evidence to justify
both short-term mortality displacement effects as well as
larger effects when short-term mortality displacement is
excluded. These latter effects may be the effects of longer-

Figure 3. Plot of the residuals of ischemic heart disease (IHD) deaths
versus day of study, after removing seasonality using a 120-day LOESS
filter and short-term fluctuations using a 15-day LOESS filter.

Figure 4. Effect on COPD mortality. The estimated effect of a 10 µg/m3

increase in PM2.5 concentration on daily mortality from COPD in Boston
(Schwartz et al 1996) and for the 4 analyses in this study, using windows of
15, 30, 45, and 60 days.

Figure 5. Effect on pneumonia mortality. The estimated effect of a 10 µg/m3

increase in PM2.5 concentration on daily mortality from pneumonia in
Boston (Schwartz et al 1996) and for the 4 analyses in this study, using win-
dows of 15, 30, 45, and 60 days.
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term average pollution concentrations, or they may reflect
increased recruitment into the susceptible pool of individ-
uals caused by air pollution. When comparing with the
original regression results, we should recall that once sea-
sonal patterns are removed, the greatest variation in the air
pollution data occurs on time scales of less than a week.
Hence the regression is presumably dominated by results
in that time scale. As we move to regressing the filtered
time series, we switch the dominant time scale first to
variations over a few weeks, and eventually to variations
over a few months. By that time, for COPD, the effect of air
pollution has disappeared. This suggests that the COPD
deaths are being brought forward usually by a few months.
It should be noted that these results apply to deaths where
COPD is listed as the underlying cause. Chronic obstruc-
tive pulmonary disease may be a contributing cause to
deaths with other underlying causes listed, and the pattern
may differ in that case. Rats with COPD had excessive mor-
tality when exposed to 200 to 300 µg/m3 of particles in
exposure chambers in a recent study (Godleski et al 1996);
however, they died in their sleep without signs of respira-
tory distress, and the deaths may have been due to cardio-
vascular effects.

In contrast, the pneumonia results suggest that there
may be some deaths brought forward by a few days, which
produces the diminished effect on a time scale of a few
weeks, but that this effect is overwhelmed by the larger
effect sizes when all longer-term filters are applied. Over a

time scale of 1 or 2 months, the effect of air pollution
seems substantially larger on pneumonia deaths than orig-
inally reported. This is not surprising. People with pneu-
monia rarely linger on the edge of death for months. If the
pneumonia is potentially life threatening, it usually
remains so for a limited period, followed by recovery or
death. If patients recover from pneumonia, they are prob-
ably safe until the next episode of pneumonia, which is
likely to be a year or more in the future. Pneumonia hos-
pital admissions in Chicago in 1992 confirm this. Of per-
sons aged 65 and older who were admitted to Chicago-area
hospitals in January and February, only 8% had a readmis-
sion in the next 6 months. Hence a pattern of some, but not
most, deaths from pneumonia being brought forward by a
few days makes sense. The possibility that longer-term
exposures to particulate air pollution may exacerbate
pneumonia deaths is also plausible, since particulate
exposure is associated with inflammatory processes. More-
over, the association between particulate air pollution and
pneumonia hospital admissions (Cleveland et al 1990;
Godleski et al 1996; Zelikoff et al 1997) suggests the pool of
persons at risk of dying from pneumonia may be increased
by particulate air pollution, not decreased. Animal studies
have shown that exposure to combustion particles exacer-
bates pneumonia in rats (Zelikoff et al 1997) and influenza
infections in mice (Clarke et al 1997), lending further cre-
dence to this association. It is still possible that the deaths
of some of these individuals, particularly at older ages, are

Figure 6. Effect of PM concentration on IHD mortality. The estimated
effect of a 10 µg/m3 increase in PM2.5 concentration on daily mortality
from ischemic heart disease in Boston (from Schwartz et al 1996) and for
the 4 analyses in this study, using windows of 15, 30, 45, and 60 days. 

Figure 7. Effect of PM concentration on all-cause mortality. The estimated
effect of a 10 µg/m3 increase in PM2.5 concentration on all cause mortality
in Boston (from Schwartz et al 1996) and for the 4 analyses in this study,
using windows of 15, 30, 45, and 60 days.
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being brought forward by only several months, which is
still a modest amount. However, the natural history of
pneumonia suggests that most of the people who recover
from pneumonia will not contract another case until the
next pneumonia season.

For IHD and for mortality from all causes, excluding
short-term changes definitely leads to an increase in the
estimated effect of air pollution. If one thinks of heart
attacks as Poisson events in vulnerable populations, then
it is not surprising that if an event is avoided on a given
day, the expected displacement of mortality will be greater
than months. The effect of air pollution might be primarily
to exacerbate a myocardial infarction brought on by other
stimuli. Here too, the analysis cannot exclude the possi-
bility that the deaths are being brought forward by, for
example, only 3 months. Since the 5-year survival rate for
people who survive the first 48 hours of a heart attack is
quite high, however, this is unlikely to be the case for most
of the avoided early deaths. Again, of elderly persons in
Chicago admitted to hospital for myocardial infarctions in
January and February of 1992, only 6% had a second
admission for a myocardial infarction in the next 6
months. Pope and coworkers (1995b) examined the rela-
tionship between fine particle exposure on a scale of years
and deaths in a prospective follow-up study involving
most of the urban areas in the United States. They reported
that a 10 µg/m3 increase in PM2.5 concentration was asso-
ciated with a 6.6% increase in all-cause mortality. They
attributed the difference between that effect estimate and
results such as the 2.1% estimate seen in the original time-
series study from Boston (Schwartz et al 1996) as sug-
gesting a greater effect of long-term exposure, possibly due
to the development of chronic disease. 

Other studies have indicated that particulate exposure
is a risk factor for the development of COPD, for example
(Euler et al 1987; Schwartz 1993b). Some have argued that
the higher slope observed by Pope and colleagues (1995b)
reflects the higher exposures that existed 20 years earlier
in their study locations (Lipfert 1997). This analysis indi-
cates that moving from a time scale of days to months cap-
tures about half the difference between the daily time
series and the prospective cohort study. This suggests that
most of the increase in slope occurs over relatively short
time scales and does not take 20 years of exposure to
develop. Of course, it is also possible that the higher slope
in the cohort studies results from uncontrolled con-
founding.

There is a developing literature on potential mechanisms
by which particulate air pollution might affect the cardio-
vascular system. Exposure of dogs to 100 to 200 µg/m3 of

fine particles in an exposure chamber for 6 hours per day
for 3 days resulted in electrocardiogram changes that are
risk factors for arrhythmia (Godleski et al 1997). These
changes were enhanced in the presence of preexisting
angina (Godleski et al 1997). Instillation of 250 µg of com-
bustion particles into the lungs of rats produced arrhyth-
mias and deaths in another recent study (Watkinson et al
1998). In humans, particulate air pollution has been associ-
ated with increases in plasma viscosity (Peters et al 1997),
increased risk of elevated heart rate (Pope et al 1999), and
changes in heart-rate variability (Shy et al 1997).

It would be of interest to examine whether the deaths
associated with particulate air pollution continue to
increase as the averaging time increases further. In partic-
ular, how long does it take to reach the levels seen in the
prospective cohort studies? Seasonality, however, impedes
examining this further using time-series data. The use of a
filter to remove seasonality prevents us from examining
longer-term averaging periods. One alternative would be to
use a larger window to control for season, but this would
increase the risk of confounding by inadequately control-
ling for season, and hence represents an inherent limita-
tion of such time-series analyses. Another limitation of the
study is the choice of lags for the exposure variables. The
original study chose a priori to use the mean of the pollu-
tion on the same and previous day in all 6 locations
studied. I have repeated that choice to maintain compara-
bility. The original paper also used weather variables on
the same day for each city studied. Further examination in
Boston could reveal a better fit from a different weather
model. Again the same model was used to maintain com-
parability. In this way differences in effect size estimates
can be uniquely attributable to discarding the higher fre-
quency variations in the data. Kelsall and coworkers
(1997) have reported that the association between airborne
particles and daily deaths in Philadelphia was insenstive
to variations in control for season and weather.

Overall, the results of this study suggest that the time-
series studies that have been published underestimate
rather than overestimate the number of early deaths that
are associated with air pollution and that are brought for-
ward by nontrivial amounts of time.
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APPENDIX A. Technical Information

The STL algorithm as applied in this analysis takes each
time series (daily deaths, daily PM2.5, daily mean temper-
ature, and daily mean dew point) and decomposes it into
3 parts. The first part represents seasonal and other longer-
term fluctuations and was fit by applying a LOESS filter to
the data with a window of 120 days. The residuals of this
process are then filtered again, using a LOESS filter with a
second window size (initially set at 15 days). The residuals
of this second filter represent fluctuations of less than
15 days. Subtracting these residuals from the residuals of
the first filter yields the fluctuations in the original time
series that have both long-term and very short-term fluctu-
ations removed. For example, we would decompose daily
fluctuations in PM2.5 as follows:

PM2.5 = PM2.5long + PM2.5mid + PM2.5short .

The subsequent regression analyses are done on the
midrange components of each series. LOESS, a nonpara-
metric running line smoother, divides the data for each
window into variations that are commensurate with a little
more than half the window size or larger and shorter-term
variations. This calculation is done by fitting a running
regression within each window to estimate the value of the
longer frequency component. The regression is weighted
with tricubic weights, defined as follows. Let t be the time
in days since the beginning of the study, tmid the midpoint
of the window (that is, the day for which a smoothed esti-
mate is being computed), and d the half-width of the
smoothing window (eg, 60 days for the 120-day smooth
that controls for season). Then define u as the fraction of
the distance between the midpoint and the end of the
window for any observation in the window. That is,

 
u =

 (t ��tmid)_
d

.  

So u ranges from 0 (at the center of the window) to ±1 at
the ends. Then the weights are: w = (1 �� �	. These
weights fall rapidly to zero at the ends of the window and
are near 1 for the central 40% of the window (Figure A.1).
Once all 4 series were filtered, the following regression
was fit: 

log(deathmid + mean [death]) =s(tempmid) 
+ s(dewmid) + PM2.5mid .

Here, s stands for a nonparametric smooth function,
which was used to ensure that nonlinearities in the depen-
dence on weather were adequately modeled. LOESS
smoothing was used for this as well, using a span of 50%
of the data, which corresponded to approximately 5 df for
each weather variable. A log-linear model was fit to main-
tain comparability with the original study. Similarly, tem-
perature and dew point on the concurrent day were used,
as in the original paper (Verhoeff et al 1996), and the
smoothing window for each weather factor was the same
as in the original paper. These conventions maintain max-
imum comparability to the original results, allowing us to
interpret differences in effect size as being due to the
exclusion of the very short-term fluctuations in the data
from the regressions. To examine the longer windows, the
entire process was repeated, using a midscale window of
first 30, then 45, and finally 60 days. 

u 3

Figure A.1. Weights assigned to points in the LOESS smooth as a function
of their distance from the center of the smoothing window. The distance is
expressed as a fraction of half the window size and ranges from �1 to 1.
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Section 5: Combining Evidence on Air Pollution and Daily Mortality 
from Twenty Largest US Cities

Francesca Dominici, Jonathan M Samet, and Scott L Zeger

ABSTRACT

Reports over the last decade of association between
levels of particles in outdoor air and daily mortality counts
have raised concern that air pollution shortens life, even at
concentrations within current regulatory limits. Criticisms
of these reports have focused on the statistical techniques
used to estimate the pollution-mortality relationship and
the inconsistency in findings among cities. We have devel-
oped analytic methods that address these concerns and
combine evidence from multiple locations in order to gain
a unified analysis of the data.

Section 5 introduces hierarchical regression models for
combining estimates of the pollution-mortality relation-
ship across cities and presents log-linear regression
analyses of daily time-series data from the 20 largest US
cities as an example. We illustrate this method focusing on
health effects of particulate matter less than 10 �m in aero-
dynamic diameter (PM10)* and considering univariate and
bivariate analyses with PM10 and O3. In the first stage of
the hierarchical model, we estimate the relative mortality
rate associated with PM10 and O3 for each of the 20 cities
using semiparametric log-linear models. The second stage
of the model describes between-city variation in the true
relative rates as a function of selected city-specific covari-
ates. We also fit 2 variations of a spatial model with the
goal of exploring the spatial correlation of the pollutant-
specific coefficients among cities. Finally, to explore the
results of considering the 2 pollutants jointly, we fit and

compared univariate and bivariate models. All posterior
distributions from stage 2 are estimated using Markov
chain Monte Carlo (MCMC) techniques. Results appear to
be largely insensitive to the specific choice of vague but
proper prior distribution. The models and estimation
methods are general and can be used for any number of
locations and pollutant measurements and have potential
application to other environmental agents.

INTRODUCTION

In spite of improvements in measured air quality indica-
tors in many developed countries, the health effects of par-
ticulate air pollution remain a regulatory and public health
concern. This continued interest is motivated largely by
recent epidemiologic studies that have examined both
acute and longer-term effects of exposure to particulate air
pollution in different cities in the United States and else-
where in the world (Schwartz 1993; Dockery and Pope
1994; Bascom et al 1996a,b; Korrick et al 1998). Controver-
sial associations have been found using Poisson time-series
regression models fit to the data using the generalized esti-
mating equations (Liang and Zeger 1986) or generalized
additive models (Hastie and Tibshirani 1990) methods.
Model approaches have been questioned (Smith et al 1997;
Clyde 1998), although analyses of data from Philadelphia
(Kelsall et al 1997; Samet et al 1997) show that the particle-
mortality association is reasonably robust to the particular
choice of analytic methods from among reasonable alterna-
tives. Past studies have not used a set of communities; most
have used data from single locations selected largely on the
basis of the data availability or pollution levels. Thus, the
extent to which findings from single cities can be general-
ized is uncertain, and consequently in the National Mor-
bidity, Mortality, and Air Pollution Study (NMMAPS) we
select locations from a national sampling frame.

Statistical power of analyses within a single city may be
limited by the amount of data for any location. Conse-
quently, pooled analyses can be more informative than
analyses of data from a single site about whether or not an
association exists, controlling for possible confounders. In
addition, a pooled analysis can produce estimates of the
parameters at a specific site, which borrow strength from

* A list of abbreviations and other terms appears on page 13.

The National Morbidity, Mortality and Air Pollution Study: Methods and
Methodologic Issues, Part I of Health Effects Institute Research Report 94,
includes an Investigators’ Report, a Preface, a Commentary by the Health
Review Committee, and an HEI Statement about the research project. Cor-
respondence concerning this section may be addressed to Dr Francesca
Dominici, Department of Biostatistics, Johns Hopkins School of Public
Health, 615 North Wolfe Street, Baltimore MD 21205-2179.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award R824835
to the Health Effects Institute, it has not been subjected to the Agency’s
peer and administrative review and therefore may not necessarily reflect
the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by
private party institutions, including those that support the Health Effects
Institute; therefore, it may not reflect the views or policies of these parties,
and no endorsement by them should be inferred.
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data from other locations (DuMouchel and Harris 1983;
DuMouchel 1990; Breslow and Clayton 1993).

The main goal of section 5 was to develop a statistical
approach that combines information about air pollution–
mortality relationships across multiple cities. We illustrate
this method with a 2-stage analysis of data from the 20
largest US cities:

1. Given a time series of daily mortality counts in each of
3 age groups, we use generalized additive models
(Hastie and Tibshirani 1990) to estimate the relative
change in the rate of mortality associated with changes
in the air pollution variables, controlling for age-spe-
cific longer-term trends, weather, and other potential
confounding factors, separately for each city;

2. We then combine the pollution-mortality relative rates
across the 20 cities using a Bayesian hierarchical
model (Lindley and Smith 1972; Morris and Normand
1992) to obtain an overall estimate and to explore
whether some of the geographic variation can be
explained by site-specific explanatory variables.

We focus mainly on the second-stage analysis and con-
sider 2 hierarchical regression models—with and without
modeling possible spatial correlations—that we refer to as
the baseline model and the spatial model. See Samet and
colleagues (1995, 1997) and Kelsall and colleagues (1997)
for details on methods for the first-stage analyses, summa-
rized below.

In both models, we assume that the vector of the esti-
mated regression coefficients obtained from the first-stage
analysis, conditional on the vector of the true relative
rates, has a multivariate normal distribution with mean
equal to the true coefficient and a covariance matrix equal
to the sample covariance matrix of the estimates. At the
second stage of the baseline model, we assume that the
city-specific coefficients are independent. In contrast, at
the second stage of the spatial model, we allow for a corre-
lation between all pairs of pollutant and city-specific coef-
ficients; these correlations are assumed to decay toward 0
as the distance between the cities increase. Two distance
measures are explored.

Next, we briefly describe the database of air pollution,
mortality, and meteorologic data from 1987 to 1994 for the
20 US cities in this analysis. We then fit the log-linear
generalized additive models to produce relative-rate
estimates for each location. The semiparametric regression
was conducted 3 times for each pollutant: using the con-
current day (lag 0) pollution values, using the previous
day’s (lag 1) pollution levels, and using pollution levels
from 2 days before (lag 2).

In Pooling Results Across Cities, we present the baseline
and the spatial hierarchical regression models for com-
bining the estimated regression coefficients and MCMC
methods for model fitting. In particular, we use a Gibbs
sampler (Geman and Geman 1984; Gelfand and Smith
1990) for estimating parameters of the baseline model and
a Gibbs sampler with a Metropolis step (Hastings 1970;
Tierney 1994) for estimating parameters of the spatial
model. We next summarize the results, make comparisons
between the posterior inferences under the 2 models, and
assess the sensitivity of the results to the choice of lag
structure and prior distributions.

DATABASES

The analysis database, used for illustrative purposes,
includes mortality, weather, and air pollution data for the
20 largest metropolitan areas in the United States for the 7-
year period 1987 to 1994 (Figure 1 and Table 1).

The cause-specific mortality data, aggregated at the level
of county, were obtained from the National Center for
Health Statistics (NCHS). We focused on daily death counts
for each site, excluding nonresidents who died in the study
site and accidental deaths. Hourly temperature and dew
point data for each site were obtained from the EarthInfo
CD2 database. After extensive preliminary analyses that
considered various daily summaries of temperature and
dew point as predictors, such as daily average, maximum,
and 8-hour maximum, we used the 24-hour mean for each
day. If there was more than 1 weather station in a city, we
took the average of the measurements from all available sta-
tions. The PM10 and O3 data were also averaged over all
monitors in a county. To protect against outliers, a 10%
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Figure 1. Map showing the 20 cities with the largest populations
(including the surrounding county). The cities are numbered from 1 to 20
following the order of Table 1.
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trimmed mean was used to average across monitors after
correction for yearly averages for each monitor. This yearly
correction was appropriate, since long-term trends in mor-
tality were also adjusted in the log-linear regressions (see
Kelsall et al 1997 for further details).

CITY-SPECIFIC ANALYSES

Here we summarize the model used to estimate the air
pollution–mortality relative rate separately for each loca-
tion, accounting for age-specific longer-term trends,
weather, and day of the week. The core analysis for each
city is a log-linear generalized additive model that
accounts for smooth fluctuations in mortality that poten-
tially confound estimates of the pollution effect and/or
introduce autocorrelation in mortality series. We model
daily expected deaths as a function of the pollution levels
on the same or immediately preceding days. We build

models that include smooth functions of time as predictors
as well as the pollution measures to avoid confounding by
influenza epidemics, which are seasonal, and by other
longer-term factors.

To specify our approach more completely, let yc
at be the

observed mortality for each age group  a =  (�65, 65–75,
�75 years)�on day t at location c, and  x c

at be a p � 1 vector
of air pollution variables. Let �c

at = E(y c
at) be the expected

number of deaths and v c
at = var(y c

at). We use a log-linear
model log � c

at = x c

at�

c for each city c, allowing the mor-
tality counts to have variances vc

at that may exceed their
means (ie, be overdispersed) with the overdispersion
parameter �c also varying by location so that v c

at = �c� c
at.

To protect the pollution relative rates �c from con-
founding by longer-term trends due, for example, to
changes in health status, changes in the sizes and charac-
teristics of populations, seasonality, and influenza epi-
demics, and to account for any additional temporal

Table 1. Summary by Location, County Population, Days with Missing Values, People in Poverty, People 65 Years or 
Older,  Pollutant Levels for O3 and PM10, and Daily Deathsa

Location Label Population
PmissO3

(%)
PmissPM10

(%)
Ppoverty

(%)
P�65

(%)
X̄ O3

(ppb)
X̄ PM

(�g/m3) Ȳ

Los Angeles la 8,863,164 0 80.2 14.8 9.7 22.84 45.98 148
New York ny 7,510,646 0 83.3 17.6 13.2 19.64 28.84 191
Chicago chic 5,105,067 0 8.2 14.0 12.5 18.61 35.55 114
Dallas/Fort Worth dlft 3,312,553 0 78.6 11.7 8.0 25.25 23.84 49
Houston hous 2,818,199 0 72.9 15.5 7.0 20.47 29.96 40

San Diego sand 2,498,016 0 82.2 10.9 10.9 31.64 33.63 42
Santa Ana/Anaheim staa 2,410,556 0 83.6 8.3 9.1 22.97 37.37 32
Phoenix phoe 2,122,101 0.1 85.1 12.1 12.5 22.86 39.75 38
Detroit det 2,111,687 36.3 53.9 19.8 12.5 22.62 40.90 47
Miami miam 1,937,094 1.4 83.4 17.6 14.0 25.93 25.65 44

Philadelphia phil 1,585,577 0.7 83.1 19.8 15.2 20.49 35.41 42
Minneapolis minn 1,518,195 100 5.4 9.7 11.6 NA 26.86 26
Seattle seat 1,507,319 37.3 24.5 7.8 11.1 19.37 25.25 26
San Jose sanj 1,497,577 0 67.7 7.3 8.6 17.87 30.35 20
Cleveland clev 1,412,141 41.4 55.6 13.5 15.6 27.45 45.15 36

San Bernardino sanb 1,412,140 0 81.6 12.3 8.7 35.88 36.96 20
Pittsburgh pitt 1,336,449 1.3 0.8 11.3 17.4 20.73 31.61 38
Oakland oakl 1,279,182 0 82.6 10.3 10.6 17.24 26.31 22
San Antonio sana 1,185,394 0.1 77.1 19.4 9.8 22.16 23.83 20
Riverside river 170,413 0 81.3 14.8 11.3 33.41 51.99 20

a NA = not available; PmissO3, PmissPM10 = percentage of days with missing values; Ppoverty = percentage of people living in poverty; P�65 = percentage of 

people 65 years or older; X̄ O3, X̄ PM = average of pollutant levels for O3 and PM10; and Ȳ  = average daily deaths.



64

NMMAPS I, Section 5: Combining Evidence from 20 Largest US Cities

correlation in the count time-series, we estimated the
pollution effect using only shorter-term variations in mor-
tality and air pollution. To do so, we partial out the smooth
fluctuations in the mortality over time by including arbi-
trary smooth functions of calendar time Sc(time, 
) for
each city. Here, 
 is a smoothness parameter that we pre-
specified, based on prior epidemiologic knowledge of the
time scale of the major possible confounders, to have
7 degrees of freedom (df ) per year of data so that little
information from time scales longer than approximately
2 months is included when estimating �c. This choice
largely eliminates expected confounding from seasonal
influenza epidemics and from longer-term trends that
result from changing medical practice and health behav-
iors, while it retains as much unconfounded information
as possible. We also controlled for age-specific longer-term
temporal variations in mortality, adding a separate smooth
function of time with 8 df for each age group.

To control for weather, we also fit smooth functions of the
same-day temperature (temp0), average temperature for the
3 previous days (temp1–3), each with 6 df, and the analo-
gous functions for dew point (dew0, dew1–3), each also with
3 df. Since there were missing values of some predictor
variables on some days, we restricted analyses to days with
no missing values across the full set of predictors.

In summary, we fit the following log-linear generalized
additive model (Hastie and Tibshirani 1990) to obtain the
estimated pollution relative rate �c and the sample covari-
ance matrix V c

� at each location:

log �c
at = x c


at�
c + � cDOW + Sc

1 (time, 7/year)

+ Sc
2(temp0, 6) + Sc

3(temp1–3, 6)

+ Sc
4(dew0, 3) + Sc

5(dew1–3, 3)

+ intercept for age group a

+ time (8 df) for age group a, (1)

where DOW are indicator variables for day of week. Samet
and colleagues (1995, 1997) and Kelsall and colleagues
(1997) give additional details about choices of functions
used to control for longer-term trends and weather.
Alternative modeling approaches that consider different
lag structures of the pollutants and of the meteorological
variables have been proposed (Davis et al 1996; Smith et al
1997, 1998). More general approaches that consider non-
linear modeling of the pollutant variables have been dis-
cussed by Smith and colleagues (1997).

Because the functions Sc(x, 
) are smoothing splines
with fixed 
, the semiparametric model described above
has a finite-dimensional representation. Hence, the analytic
challenge is to make inferences about the joint distribution

Figure 2. Univariate model for PM10. Results of regression models for the
20 cities by selected lag: �̂c and 95% CIs of �̂c � 1,000 for PM10. Cities are
presented in decreasing order by population living within their county
limits. The vertical scale can be interpreted as the percentage increase in
mortality per 10 µg/m3 increase in PM10. The results are reported using the
concurrent day (lag 0) pollution values to predict mortality, using the pre-
vious day’s (lag 1) pollution levels, and using pollution levels from 2 days
before (lag 2).
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of the �c in the presence of finite-dimensional nuisance
parameters, which we refer to as �c.

We separately estimated 3 semiparametric regressions
for each pollutant with the concurrent day (lag 0), prior

day (lag 1), and 2 days prior (lag 2) pollution predicting
mortality. The estimates of the coefficients and their 95%
confidence intervals (CIs) for PM10 entered independently
in the model and for PM10 adjusted by O3 are shown in
Figures 2 and 3. Cities are presented in decreasing order by
the size of their populations. The figures show substantial
between-location variability in the estimated relative rates,
suggesting that combining evidence across cities would be
a natural approach to explore possible sources of heteroge-
neity and to obtain an overall summary of the degree of
association between pollution and mortality. To add flexi-
bility in modeling the lagged relationship of air pollution
with mortality, we could have used distributed lag models
instead of treating the lags separately. Although desirable,
this was not easily implemented because many cities have
PM10 data available only every sixth day.

To test whether the log-linear generalized additive model
(1) has taken appropriate account of the time dependence
of the outcome, we have calculated, for each city, the auto-
correlation function of the standardized residuals. Figure 4
displays the 20 autocorrelation functions; they are centered
near 0 and range between –0.05 and 0.05, confirming that
the filtering has removed the serial dependence.

We also examined the sensitivity of the pollution rela-
tive rates to the df used in the smooth functions of time,
weather, and seasonality by halving and doubling each of
them. The relative rates changed very little as these param-
eters were varied over this fourfold range (data not shown).

Figure 3. Bivariate model for PM10 adjusted by O3. Results of regression
models for the 20 cities by selected lag: �̂c and 95% CIs of �̂c  � 1,000 for
PM10 adjusted by O3. Cities are presented in decreasing order by population
living within their county limits. The empty circle placed at Minneapolis
represents the absence of the O3 data in this city. The vertical scale can be
interpreted as the percentage increase in mortality per 10 µg/m3 increase in
PM10. The results are reported using the concurrent day (lag 0) pollution
values to predict mortality, using the previous day's (lag 1) pollution levels,
and using pollution levels from 2 days before (lag 2).

Figure 4. Plots of city-specific autocorrelation functions of standardized
residuals rt, where rt(Yt � Ŷt) / ���(Ŷt) and Ŷt are the fitted values from log-
linear generalized additive model (1).
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POOLING RESULTS ACROSS CITIES

Here we present hierarchical regression models
designed to pool the city-specific pollution relative rates
across cities to obtain a summary value. Hierarchical
regression models provide a flexible approach to the anal-
ysis of multilevel data. In this context, the hierarchical
approach provides a unified framework for making esti-
mates of the city-specific pollution effects, the overall pol-
lution effect, and the within-cities and between-cities
variation of the city-specific pollution effects.

Results of several applied analyses using hierarchical
models have been published. Examples include models for
the analysis of longitudinal data (Gilks et al 1993), spatial
data (Breslow and Clayton 1993), and health care utiliza-
tion data (Normand et al 1997). Other modeling strategies
for combining information in a Bayesian perspective are
provided by DuMouchel (1990), Skene and Wakefield
(1990), Smith and colleagues (1995), and Silliman (1997).
Recently, spatiotemporal statistical models with applica-
tions to environmental epidemiology have been proposed
by Wickley and colleagues (1997), Meiring and colleagues
(1997), and Wakefield and Morris (1998).

After the following overview of our modeling strategy,
we consider 2 hierarchical regression models with and
without modeling of the possible spatial autocorrelation
among the �, which we refer to as the baseline and spatial
models, respectively.

MODELING APPROACH

The modeling approach comprises 2 stages. At the first
stage, we use the log-linear generalized additive model (1):

 yc
t � �

c,�c~ Poisson[�t(�c,�c)]

where yc
t = (y���t, y65–75t, y���t�. The parameters of scien-

tific interest are the mortality relative rates, �c, which for
the moment are assumed not to vary across the 3 age
groups within a city. The vector �c of the coefficients for
all the adjustment variables, including the splines in the
semiparametric log-linear model, is a finite-dimensional
nuisance parameter.

The second stage of the model describes variation among
the �c across cities. We regress the true relative rates on
city-specific covariates, zc, to obtain an overall estimate
and to explore the extent to which the site-specific explan-
atory variables explain geographic variation in the relative
risks. In epidemiologic terms, the covariates in stage 2 are
possible effect modifiers. More specifically, we assume:

�c|�, � ~ Np(zc�, �)

where p is the number of pollutant variables that enter
simultaneously in model (1). Here the parameters of scien-
tific interest are the vector of the regression coefficients, �,
and the overall covariance matrix, �. Because there is little
or no interest in the �c in the current scientific context, we
assume that these nuisance parameters are independent;
that is, we do not use data from the other locations for the
purpose of improving estimation of the remaining loca-
tion.

Our goal is to make inferences about parameters of
interest—the �c, �, and �—in the presence of nuisance
parameters �c. To estimate an exact Bayesian solution to
this pooling problem, we would analyze the joint posterior
distributions of the parameters of interest as well as of the
nuisance parameters, and then integrate over the �c

dimension to obtain the marginal posterior distributions of
the �c. Although possible, the computations become
extremely laborious and are not practical for either this
analysis or a planned model with 100 or more cities.

Given the large sample size at each city (T ranges from
550 to 2,550 days), accurate approximations to the poste-
rior distribution can be obtained using the normal approx-
imation of the likelihood (Le Cam and Yang 1990).
Therefore, if the joint likelihood p(yc  ��c, �c) has a multi-
variate normal distribution with mean equal to the max-
imum likelihood estimates of �c and �c and covariance
matrices Vc

� and Vc
�, then by definition p(yc  ��c) has multi-

variate normal distribution with mean �̂c and covariance
matrix V c

�. We then replace the first stage of the model
with a normal distribution, with mean and variance equal
to the maximum likelihood estimates of the parameter.
Recently it has been shown that the strategy based on the
normal approximation of the likelihood gives an alterna-
tive 2-stage model that well approximates the original
model and leads to more efficient simulation from the pos-
terior (Daniels and Kass 1998).

To check whether the inferences based on the normal
approximation of the likelihood are proper, we have com-
pared our approach with the implementation of the full
MCMC approach for a few cities with sample sizes ranging
from 2,000 in Pittsburgh to 545 in Riverside. Figure 5
shows the histogram of samples for Riverside from
p(�c  data)—obtained implementing a Gibbs sampler that
simulates from p(�c  ��c, data) and p(�c   �c, data) and
approximate p(�c  data) by !p(�c,�c  data)d�c—with sam-
ples from N(�̂c, Vc

�) (the solid line in the figure). The 2 dis-
tributions are very similar.
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BASELINE MODEL

Let �c = [�c
PM10, �c

O3]" be the relative rate associated with
PM10 and O3 at city c. We consider the following hierar-
chical model:

�̂c ���c ~ N2(� c,V c
�)

 �c
PM10 = z c


PM10�PM10 + � c
PM10 (2)

�c
O3 = z c


O3�O3 + � c
O3

�c � � ~ N2(0, �)

where zc
PM10 = [1, Pc

poverty, Pc
>65, X̄ c

PM10]"� zc
O3 = [1, Pc

poverty,
Pc

>65, X̄ c
O3]", �PM10 and �O3 are 4 � 1 vectors, and finally

�c = [�c
PM10, �c

O3]" c = 1, …, 20. This model specification
allows dependence between the relative rates associated
with PM10 and O3 but implies independence between the
relative rates of city c and c".

Under this model, the true PM10 and O3 relative rates in
city c are regressed on predictor variables, including, for
example, the percentage of people in poverty (P c

poverty)
and the percentage of people older than 65 years (P c

>65),
and on the average of the daily values of PM10 and O3 over

the period 1987 to 1994 in location c, X̄ c
PM10, X̄ c

O3. If we
center the predictors about their means, the intercepts
�0,PM10 and �0,O3 can be interpreted as overall effects for a
city with mean predictors. A simple pooled estimate of the
pollution effect is obtained by setting all covariates to 0. To
compare the consequences of considering 2 pollutants
independently and jointly in the model, we fit a baseline-
univariate model—that is, � assumed diagonal—and a
baseline-bivariate model—that is, � assumed to have non-
zero off-diagonal elements.

Inference on the parameters � = [�PM10, �0,O3]" and �
represents a synthesis of the information from the 20
cities; for example, the parameters �0j, [�]jjj = PM10, O3,
determine the overall level and the variability of the rela-
tive change in the rate of mortality associated with changes
in the jth pollutant level on average over all the cities.

The Bayesian formulation is completed by specifying
dispersed but proper baseline prior distributions, and then
supplementing the baseline analysis with additional sensi-
tivity analysis. A priori, we assume that the joint prior is
the product of the marginals for � and �. The following
baseline prior specifications for the marginals were used:

Overall relative rates � ~ Np(k + 1)(m, V�)

Overall covariance matrix � ~ IWp(df, D)

where p and k denote the number of pollutant variables
entering simultaneously in the model and k the number of
city-specific covariates, respectively. We select m equal to
a vector of 0s, V� equal to a diagonal matrix, with diagonal
elements equal to 100, df = 3, and D a diagonal matrix with
diagonal elements equal to 3. These prior hyperparameters
lead prior 95% support to the overall effect, the city-spe-
cific effects, and the correlation between the PM10 and the
O3 relative rates equal to (–10, 10), (–4, 4), and (–0.85, 0.85),
respectively. This prior specification has been selected
because it does not impose too much shrinkage of the
study-specific parameters toward their overall means,
while at the same time specifying a reasonable range for
the unknown parameters a priori.

Given these prior assumptions, we can draw inferences
on the unknown parameters using the posterior distribution

p(�1, …, �20, �, � �  �̂1, …,  �̂20, V1
�, …, V20

� ). (3)

To do this, we implement an MCMC algorithm with a
block Gibbs sampler (Gelfand and Smith 1990) in which
the unknowns are partitioned into the following groups: �c,
�, and �. Each group is sampled in turn, given all others.
The full conditional distributions are all available in closed
form. Their derivation is routine (Bernardo and Smith

Figure 5. Comparison between the normal approximation of the likeli-
hood of �c and the marginal posterior distribution of �c. The solid line rep-
resents the normal density N(�̂c, Vc

�) where �̂c and Vc
� are the maximum

likelihood estimates of a semiparametric Poisson regression model. The
histogram represents the marginal posterior distribution of �c obtained by
implementing a full Gibbs sampler for the parameter of interest �c and for
the coefficients of the natural cubic splines 	c.
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20

1994) and not detailed here. Because of the normality
assumptions at the first and second stages of the hierar-
chical model, computation of the posterior distributions of
all the unknowns under an univariate model can be per-
formed via direct simulation following the factorization:

p(�1, …, �20, �, �2�data) = p(�2�data)p(���2, data)�
c = 1

p(�c|�, �2, data)

The first step, simulating � 2, can be performed numeri-
cally (using the inverse cumulative distribution function
method, for example). The second and third steps can be
done easily by sampling from normal distributions. This
strategy can be conveniently implemented only for the
univariate baseline model.

SPATIAL MODEL

The assumption of independence of the city-specific
coefficients made in the baseline model can be relaxed to a
more general model in which the correlation between �c

and �c
 decays as either a smooth or step function to 0 as
the distance between the 2 cities, c and c", increases. Here
we consider a hierarchical model in which the inferences
allow for the possible spatial correlation among the �c. We
consider only univariate models because of the small
number of cities; extension to multivariate models is
straightforward but requires a larger data set.

At the second stage of the spatial model, we assume that
there is systematic variation in the air pollution–mortality
relationship from pollutant to pollutant as specified in the
baseline model (2). We express the degree of similarity of
the relative rates in locations c and c", as a function of an
(arbitrary) distance between c and c", by assuming
#(c, c") = Corr(�c, �c
) = exp(�
d(c, c")). We consider 2
distance measures, the Euclidean distance between the
cities c and c" in the longitude and latitude coordinates,
and a step function such that d(c,c)  = 1 if location c and c"
are within a common region and d(c, c") = $ if not. Under
this assumption, the correlation of 2 cities within the same
region is e��, and the correlation for cities from different
regions is 0. Alternative definitions of distance can be
incorporated easily into the model as appropriate.

The spatial model with (1, $) distance can be also spec-
ified as a 3-stage hierarchical model where the first stage is
as the baseline model (2), the second stage describes the
heterogeneity of the estimates within regions, and the
third stage describes the heterogeneity of the estimates
across regions. For this regional model, we have clustered

the 20 cities in the following 3 regions: East, South, and
West US.

The spatial model specification is completed with the
elicitation of the prior distribution. For � and � we choose
the same prior specified for the baseline model. For the
parameter 
 under the spatial model with Euclidean dis-
tance, we choose a log-normal prior with mean 1 and stan-
dard deviation 1.2. This specification leads to a prior
distribution of the correlation #(c, c") of the closest cities
having mean 0.56 (95% interval, 0 to 0.96), and prior dis-
tributions of all the other pairs c, c" more concentrated at 0
as the distance between cities increases.

In the spatial model, the full conditionals for the �c, �,
and � are all available in closed form. In contrast, to
sample from the full conditional distribution of 
, we used
a Metropolis-Hastings algorithm with a Gamma proposal
distribution having mean equal to the current value of 

and fixed variance. The spatial model with step distance
can be more efficiently sampled with a block Gibbs sam-
pler because the full conditional distributions of all the
unknown parameters are available in closed form.

RESULTS

We ran the Gibbs sampler for 3,000 iterations for both
the baseline and the spatial models, ignoring the first 100.
The autocorrelation, computed from a random sample of
the �0, PM10, was negligible at lag 5 so we sampled every
fifth observation for posterior estimation. The acceptance
probabilities for the Metropolis-Hastings algorithm aver-
aged between 0.3 and 0.5. Convergence diagnosis has been
performed by implementing Raftery and Lewis (1992)
methods in Convergence Diagnostics and Output Analysis
(CODA) (Best et al 1995), which reports the minimum
number of iterations, Nmin, needed to estimate the vari-
able of interest with an accuracy of ±0.005 and with prob-
ability of attaining this degree of accuracy equal to 0.95.
Nmin ~ 2,000 were proposed.

Figure 6 summarizes results of the pooled analyses under
the univariate-baseline model. This figure displays the pos-
terior distributions of city-specific regression coefficients �c

associated with changes in PM10 measurements for the 20
cities at the current-day, 1-day, and 2-day lags. The marginal
posterior distribution of the overall effect (�0, PM10) is dis-
played at far right. Cities are ordered by the decreasing size
of their populations. At the current day, the highest relative
rate for the PM10 variable occurs at Santa Ana/Anaheim
with 1.08% increase in mortality (95% interval, 0.20 to
1.97) per 10 µg/m3 increase in PM10. Overall, we find that a



69

JM Samet et al

10 µg/m3 increase of PM10 is associated with an estimated
0.34% increase in mortality (95% interval, –0.08 to 0.78).

Figure 7 summarizes results of the pooled analyses
under the bivariate-baseline model. When PM10 and O3
are combined in the same model, we estimate that 10-unit
increments in PM10 adjusted by O3 are associated with

Figure 6. Univariate model for PM10. Results of pooled analyses (PM10
entered independently in the model). Boxplots of samples from the poste-
rior distributions of city-specific regression coefficients, �c, associated
with changes in PM10 measurements. For comparison, samples from the
marginal posterior distribution of the corresponding overall effects are dis-
played at far right. The vertical scale can be interpreted as the percentage
increase in mortality per 10 µg/m3 increase in PM10. The results are
reported using the concurrent day (lag 0) pollution values to predict mor-
tality, using the previous day's (lag 1) pollution levels, and using pollution
levels from 2 days before (lag 2).

Figure 7. Bivariate model for PM10 adjusted for O3. Results of pooled anal-
yses under the baseline bivariate model (PM10 and O3 entered simulta-
neously in the model). Boxplots of samples from the posterior distributions
of city-specific regression coefficients, �c, associated with changes in PM10
adjusted by O3 measurements. For comparison, samples from the marginal
posterior distribution of the corresponding overall effects are displayed at
far right.  The vertical scale can be interpreted as the percentage increase in
mortality per 10 µg/m3 increase in PM10. The results are reported using the
concurrent day (lag 0) pollution values to predict mortality, using the pre-
vious day's (lag 1) pollution levels, and using pollution levels from 2 days
before (lag 2).
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mortality increases of 0.37% (95% interval, 0.04 to 0.71)
increase in mortality.

The marginal posterior distribution of the overall regres-
sion effect combines and synthesizes the information from
the 20 locations. Figure 8 shows the marginal posterior
distributions of the overall pollution relative rates at the
current day, 1-day, and 2-day lags obtained from the base-
line-univariate, the baseline-bivariate, and the spatial
models. At the top right the posterior probabilities that the

overall effects are larger than 0 for each lag-specification
are summarized. In univariate and bivariate analyses, we
found significant effects of PM10.

Results of the adjusted analyses under the univariate-
baseline model are shown in Table 2. Here we summarize
the posterior means and the 95% posterior support inter-
vals for the relationship between the mean of the city-spe-
cific coefficients and the percentage in poverty, the
percentage of people older than 65, and the mean level of
the pollutant. None of these variables were found to pre-
dict the PM10 relative rate.

An interaction of the pollution effects and age can be
detected by the coefficient of the variable P>65 in the
second-stage regression model. A more direct approach is
to estimate a separate pollution relative rate for each age
stratum in the first-stage log-linear models and then to
pool the trivariate vector (�̂<65, �̂65–75, �̂>75) across cities.
When we did this, the estimate of the overall effect of PM10
for persons older than 75 was the largest with posterior
mean 0.46 (95% interval, 0.12 to 0.82), but there was not a
strong trend in the pollution relative rates with age as was
suggested by the second-stage regression results in Table 2.

The variability of the regression coefficients, on average,
over all the locations is captured by the matrix �. Marginal
posterior means and 95% posterior support intervals are
summarized in Table 3. A large diagonal element signifies
large variability over cities in the corresponding coeffi-
cient, while a large off-diagonal element signifies strong
correlation between the PM10 and O3 coefficients. Table 3
shows the results. Under the baseline bivariate model, the
standard deviation of the true coefficients across cities is
estimated to be 0.60 (95% interval, 0.42 to 0.84), which is
about twice as large as the overall estimate of the pollution
effect. Hence, the variability in PM10 coefficient is nonneg-
ligible. The posterior distribution of the off-diagonal ele-
ments of � indicates a negative mean correlation between
the effects of the 2 pollutants, but with a large standard
deviation.

From the posterior samples of 
 in the spatial model, we
can easily calculate the marginal posterior distributions of
the correlation coefficient #(c, c") = exp (�
d (c, c")) for each
distance d(c, c"). For the 2 closest cities, the posterior mean
and interquartile range (IQR) of the correlation between �c

and �c
 is 0.73 (0.51 to 0.88) for PM10. Under the regional
model, with distance equal to a step function, the posterior
mean and interquartile range (IQR) of the within-region
correlation of the city-specific relative rates, e��, is 0.73
(0.66 to 0.86), suggesting that the adverse health effects of
PM10 on mortality are more similar for locations belonging
to the same region than for locations belonging to 2 dif-
ferent regions. The posterior means and IQR for the

Figure 8. Pooled analyses under the baseline univariate, baseline
bivariate, and spatial models. Marginal posterior distributions of the
overall effects, 
0, PM10, for different lags. At the top right are specified the
posterior probabilities that the overall effects are larger than 0.
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regional effects��EAST, �SOUTH, and �WEST are 0.20 (0 to  0.44),
0.1 (–0.2 to 0.39), 0.52 (0.27 to 0.75), suggesting that the
adverse health effects of PM10 on mortality in the West US
was larger than in the East and South US.

We have assessed the robustness of the results with
respect to choices of the model (univariate, bivariate, spa-
tial), of the lag-structure (lag 0, lag 1, lag 2), and of the prior
distributions. Our sensitivity analysis compared 27 alter-
native scenarios (3 for model choice, 3 for lag structures,
and 3 for prior distributions). For these scenarios we

compared the posterior probability that the overall effect
of the PM10 is larger than 0. The consequences of these
choices are shown in Table 4. Significant effects of PM10
on total daily mortality were observed in all 3 models
(weaker under a spatial model with 2 days prior—lag 2—
pollution predicting mortality). When both pollutants
were included in the model, adverse effects of PM10
become stronger. Spatial analyses slightly attenuate the
effects.

Table 3. Posterior Means (and 95% Support Intervals) of Elements of � Under Three Models (Baseline Bivariate, Baseline 
Univariate, and Spatial)a

Model Std of PM10 Effects Std of O3 Effects
Correlation Between
PM10 and O3 Effects

Baseline Bivariate 0.60 (0.42, 0.84) 0.84 (0.51, 1.29) �0.12 (�0.60, 0.42)
Baseline Univariate 0.87 (0.65, 1.18) 1.04 (0.75, 1.41)
Spatial 0.90 (0.65, 1.24) 1.05 (0.75, 1.39)

a Std of PM10 effects = standard deviation across locations of �c
PM10; Std of O3 effects = standard deviation across locations of �O

c
3;  correlation between PM10 

and O3 effects = correlation between��c
PM10 and �O

c
3 .

Table 2. Results of Adjusted Second-Stage Analyses Under Baseline Univariate Modela

City-Specific Covariates Lag 0 Lag 1 Lag 2

Overall PM10 0.350 (�0.099, 0.815) 0.380 (�0.078, 0.828) 0.236 (�0.183, 0.667)

Ppoverty (%) �0.015 (�0.141, 0.112) 0.011 (�0.113, 0.131) 0.040 (�0.074, 0.160)

P>65 (%) �0.050 (�0.224, 0.123) 0.027 (�0.144, 0.207) �0.005 (�0.175, 0.169)

X̄ c
PM10 (�g/m3) �0.003 (�0.065, 0.055) �0.004 (�0.065, 0.058) �0.006 (�0.064, 0.053)

a PM10 is entered independently in the model. Posterior means (95% posterior support intervals) of coefficients for the relationship between true relative 
rate ��c), percentage of people in poverty (Ppoverty), percentage of people older than 65 (P>65), and mean level of pollutant (X�     P

c
  M10). Results are reported 

using concurrent day’s (lag 0) pollution values to predict mortality, using previous day’s (lag 1) pollution levels, and using pollution levels from 2 days 
previously (lag 2).

Table 4. Posterior Probabilities That Overall Effects of PM10 Are Larger Than 0 by Lag and by 3 Prior Distributions Under 
3 Models (Baseline Univariate, Baseline Bivariate, and Spatial)a

Model

Prior 1 Prior 2 Prior 3

Lag 0 Lag 1 Lag 2 Lag 0 Lag 1 Lag 2 Lag 0 Lag 1 Lag 2

Baseline Univariate 0.95 0.96 0.90 0.93 0.95 0.93 0.95 0.96 0.90
Baseline Bivariate 0.98 0.99 0.97 0.99 0.98 0.97 0.98 0.99 0.97
Spatial 0.89 0.92 0.85 0.91 0.94 0.84 0.88 0.89 0.84

a The 3 prior specifications lead to the following 95% support intervals of the overall effects and the city-specific effects, and to the following 75% support 
intervals for the spatial correlation for the relative rates of the 2 closest cities: Prior 1: (�20, 20), (�4, 4), (0.16, 0.8); Prior 2: (�4, 4), (�4, 4), (0.16, 0.8); 
and Prior 3: (�4, 4), (�4, 4), (0.64, 0.9).
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DISCUSSION

We have developed a statistical model for obtaining a
national estimate of the effect of urban air pollution on
daily mortality and illustrated its use. Because estimation
of a national pollution-relative rate is the primary objec-
tive of NMMAPS, we used a 2-stage approach that allowed
the modeling effort to focus on combining information
across cities. In the first stage, we used a log-linear regres-
sion to estimate a pollution-relative rate for each city while
controlling for the city-specific longer-term time trends
and weather effects. Because we had no specific scientific
interest in the time or weather effects, we made no effort to
impose modeling assumptions to enable us to borrow
strength across cities when estimating the effects on mor-
tality of these variables.

In the second stage, we regressed the true relative rates
on city-specific covariates to obtain an overall estimate
and to estimate the variation among the coefficients across
cities. We then generated posterior estimates of the overall
pollution effect and of the city-specific effects using
MCMC methods. We used 2 models for combining infor-
mation across cities. The first treated relative rates from
different cities as independent of one another. The second
allowed the possibility of geographic correlation among
the true coefficients.

Although only a first step, the modeling described here
establishes a basis for carrying out national surveillance
for effects of air pollution and weather on public health.
The analyses can be easily extended to studies of cause-
specific mortality and other pollutants. Monitoring efforts
using models such as the one described here are appro-
priate given the important public health questions that
they can address and the considerable expense to govern-
ment agencies for collecting the information that forms the
basis for this work.

An alternative modeling strategy would have been to
use a single large MCMC method to estimate simulta-
neously the parameters in the log-linear models within
each city, the overall estimate of the pollutant, and all of
the nuisance parameters. Such a model would borrow
strength across cities to obtain more precise estimates of
the nuisance functions for each city. This type of approach
would be necessary if there were limited information
about the nuisance parameters within each city as, for
example, in the Neyman and Scott (1960) problem. As this
was not the case in our investigation, we focused the mod-
eling and computing effort on combining city-specific rel-
ative rate estimates to obtain a national average relative
rate.

If the likelihood function for the pollution relative rate
and the nuisance parameters is well approximated by a
Gaussian distribution, then our approach will give a close
approximation to the posterior distribution from an
MCMC that simulated both the parameters of interest and
the nuisance parameters. We compared the marginal pos-
terior of the � c obtained using a full MCMC with our
normal approximation for a few cities; they were indistin-
guishable.

This new hierarchical method will be applied to data
from 90 US cities. The 20-city example shows the potential
for this approach to provide a summary estimate of the effect
of particulate matter while controlling for other pollutants
and considering differences in city characteristics.
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INTRODUCTION

The National Morbidity, Mortality, and Air Pollution
Study (NMMAPS)* was designed to address uncertainties
regarding the association between particulate air pollution
and daily mortality. It was initiated in 1996, as the US
Environmental Protection Agency (EPA) was reviewing the
National Ambient Air Quality Standards (NAAQSs) for
particulate matter (PM). The EPA PM Criteria Document
(1996a) described studies from cities around the world
that observed excess daily mortality associated with PM.
Some observers, however, pointed to differences among
the results from individual locations as suggesting that the
association between PM and mortality is not one of cause
and effect (Moolgavkar and Luebeck 1996). They observed
that few studies had adequately addressed the possibility
of confounding or effect modification by the non-PM pol-
lutants, and when these issues were addressed, there was
some evidence of an impact on the PM-mortality associa-
tion (Moolgavkar et al 1995; Gamble and Lewis 1996).
Thurston and Kinney (1995) observed that various statis-
tical approaches to modeling of time-series data produced
different results in the same data sets, and therefore the
variation in methods might be an alternative explanation
for differences in findings between cities.

Lipfert and Wyzga (1997) posited that errors in the meas-
urement of air pollution exposure, attributable to both
instrumental error and presumed lack of correlation
between personal exposure and centrally measured
ambient concentrations, made it difficult to attribute any
observed excess in mortality to PM. McMichael and col-
leagues (1998) and Lipfert and Wyzga (1995) noted that
even if the findings from current studies did indicate that
excess daily mortality was caused by PM, the magnitude of
reduction in life expectancy was unclear. If all the excess
risk was confined to those frail persons who would have

lived only for a few days longer if unexposed (a slight
shortening of lifespan known as mortality displacement or
harvesting), then the overall public health impact might
not be as great. The EPA noted this uncertainty as well, but
the results of two US prospective cohort studies (Dockery
et al 1993; Pope et al 1995) were cited as evidence of larger
reductions in life expectancy (EPA 1996b).

To conduct a nationwide multicity study, and to address
the issues of measurement error and mortality displace-
ment, new analytic methods were needed. NMMAPS Part I,
Methods and Methodologic Issues, presents 5 sections that
describe statistical methods that Dr Jonathan Samet and
his colleagues developed to address exposure measure-
ment error, mortality displacement, and model building
for evaluating mortality in multiple cities and for multiple
pollutants.† The methods for the multicity analysis are
applied in NMMAPS Part II, Morbidity, Mortality, and Air
Pollution in the United States, which presents results of
analyses of overall and cause-specific mortality associated
with PM and other pollutants in the 20 largest US cities
and with PM alone in the 90 largest cities.

The original objectives of NMMAPS are well delineated
in the Investigators’ Report. NMMAPS Part I meets the
objectives of methods development as described in the
Overview. NMMAPS Part II addresses many of the
remaining objectives, including an application of the mul-
ticity models developed in Part I, using data from the EPA,
National Center for Health Statistics (NCHS), Health Care
Financing Administration (HCFA), US Census, and
National Weather Bureau. Also, the investigators are con-
tinuing to analyze the database, including analyses that
combine morbidity and mortality data in several of the
same cities considered in Part II; the findings will be pub-
lished as a separate report.

Development of the methods in this report, which con-
sider and examine issues of exposure measurement error
and mortality displacement, has advanced the field of air
pollution epidemiology in a major way, as has the applica-
tion of the hierarchical models to analyze multiple cities
and pollutants. Each of these issues is discussed below.

EXPOSURE MEASUREMENT ERROR

SCIENTIFIC BACKGROUND

NMMAPS Part I developed a conceptual framework and
analytic approaches for considering the effect of exposure

* A list of abbreviations and other terms appears on page 13.

† Dr Jonathan Samet’s investigation, The National Morbidity, Mortality, and
Air Pollution Study, which will generate several reports, began in December
1996 and has cost about $700,000 to date. Part I of the Investigators’ Report
from Dr Samet and colleagues was received for review in May 1999. A
revised report, received in September 1999, was accepted for publication in
November 1999. During the review process, the HEI Review Committee
and the investigators had the opportunity to exchange comments and to
clarify issues in the Investigators’ Report and in the Review Committee’s
Commentary.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views or policies of these parties, and no endorsement
by them should be inferred.
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measurement error on relative risk estimates. In epidemio-
logic studies, errors in measuring, quantifying, or classi-
fying exposure can affect estimates of the association
between exposure and health outcomes. Exposure mea-
surement error not only includes any errors resulting from
the measurement instrument, but also considers the error
in assigning an individual’s exposure based on instruments
some distance away from each individual. Statisticians
have investigated measurement error for at least half a cen-
tury and have identified methods to overcome it. Statistical
theory shows that in many situations the effect of exposure
measurement error is to bias the estimate of association
toward the null—that is, to lessen the estimated magnitude
of any effect. Therefore, in these circumstances, the magni-
tude of the true unbiased effect would be larger than the
observed (biased) effect estimate. This bias toward the null
is not always the case, however.

One situation in which the bias is not towards the null
occurs when a single measured value is taken to represent
exposure in many individuals, whose average true expo-
sure is equal to this single measured value. The resulting
measurement error (called Berkson error) causes little or
no bias in the effect estimates. Perhaps most worrisome are
errors in measuring a variable that is confounding the asso-
ciation of interest, which can bias the effect estimate of
that association in either direction. Error in measuring the
variable of interest, if this error is correlated with an
unmeasured or poorly measured confounding variable,
can also lead to bias in either direction.

The impact of measurement error in ecologic time-series
studies of air pollution has not been well studied. Thus, the
generic criticism of these studies is that, because ambient
air pollution is a poor measure of individuals’ personal
exposures, any positive results are likely to be spurious.
Low correlations in studies comparing personal and
ambient exposures appear to support such concerns. These
concerns have been countered by findings that changes in
pollutant concentrations at fixed central sites over time cor-
relate well with changes in individually measured concen-
trations over time. Whereas ad hoc approaches have been
used to address the effects of measurement error in these
time-series studies, this report provides the first systematic
consideration of how exposure measurement error might
affect risk estimates between measures of PM less than 10
mg in aerodynamic diameter (PM10) and mortality.

TECHNICAL EVALUATION

Section 1

In section 1, Zeger and colleagues establish a conceptual
framework for considering exposure measurement error.

The authors review the basic theory of measurement error
effects, emphasizing the distinction between classical
error, which causes bias in measures of association in most
situations, and Berkson error, which causes little or no
bias. This distinction provides the key to the framework
proposed for the time-series context, where error is decom-
posed into 3 components, one of which is demonstrated to
be of the Berkson type and therefore should not bias the
association under investigation.

The 3 components of exposure measurement error dis-
cussed by the authors include differences between (1)
individual exposure and average of individual exposures,
(2) average individual exposure and true ambient expo-
sure, and (3) measured ambient exposure and true ambient
exposure. The components are primarily conceptual
because the true exposures cannot easily be measured. The
major Berkson error component is the difference between
an individual’s actual exposure to a particular pollutant
and the average individual exposures of everyone in the
city of interest. Strictly, this is a weighted average, but the
authors convincingly show that the weights are usually
unimportant. Therefore, if the true average population
exposure were known and used in the time-series regres-
sion, the estimate of increment in risk per unit exposure
would apply without bias to both individuals’ exposures
as well as the population average. The average is not
known, however, and it is the ambient exposure measured
by one or a few monitors that is generally used. The differ-
ence between the monitor measurements and the average
personal exposure is the remaining error [components (2)
and (3)] and is not of the Berkson type, and thus is likely to
introduce bias in the effect estimate.

The authors further decompose this remaining error into
the last 2 components: the difference between the average
personal exposure and the true ambient exposure, and the
difference between the true ambient exposure and the
measured ambient exposure. It is not entirely clear what
the true ambient exposure is, or how the further decompo-
sition is useful. The authors argue, however, that the dif-
ference between the true and measured ambient exposure
is likely to be of the Berkson type (introducing no bias).
This would leave only the difference between average per-
sonal and true ambient exposure as likely to cause bias.
The reasons for believing the third component (the differ-
ence between measured ambient and true ambient expo-
sure) to be of the Berkson type are not clear, however. As
the distinction is not used further, the issue appears to be
academic; and this extra component may unnecessarily
complicate the model.

The approach suggested by the investigators for cor-
recting estimates of pollution-mortality relationships
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broadly follows the relatively straightforward statistical
method known as regression calibration (Carrol et al
1995), which assumes availability of data on both the
error-prone daily ambient exposure measurements and
personal exposure measurements for some persons on
some days. These data are used to calibrate, that is, adjust,
the ambient exposure measures by estimating from a
regression model the change in average personal expo-
sures corresponding to a unit change in ambient expo-
sures. Once this calibration factor is known, the estimated
change in mortality per unit change in ambient exposures
can be corrected so that they apply to changes in personal
exposures.

In section 1, the regression calibration is applied to
data from the Particle Total Exposure Assessment Meth-
odology (PTEAM) personal exposure study (Ozkaynak et
al 1996) that included personal exposure measurements
in Riverside, California, and ambient measures for the
same days. The calibration regression found that a change
of 1 �g/m3 PM10 in the ambient measure was associated
with a change of 0.60 �g/m3 PM10 in average personal
measures. Since the time-series analysis provides an esti-
mate of effect for ambient exposures, the calibration
factor for estimating the effect of personal exposure from
an observed effect of ambient exposure, in this example,
is 1/0.60 = 1.67. That is, the error introduced by using
ambient exposure instead of personal exposure in esti-
mating change in mortality per unit exposure can be
adjusted, and, in this example, the adjustment results in a
greater risk of mortality.

Using this method to estimate confidence intervals (CIs)
for this risk estimate underestimates uncertainty, however,
as the CIs do not reflect the imprecision in the calibration
slope estimate (0.60). In section 1, simulations produce CIs
without this limitation; the simulations in the example
data were very similar to the calibration slope estimate.
The simulation approach has the flexibility to extend to
more complex situations, as illustrated in section 2. Sim-
pler (but less easily extended) alternative methods for
obtaining correct CIs are available (Rosner et al 1992;
Carrol et al 1995), but were not considered in this report.

The regression calibration example in section 1 focuses
on error in measuring exposure to a single pollutant. The
authors, however, consider the theoretical impact of error
in confounding variables and calculate bias under the clas-
sical error model with 2 exposure variables. These calcula-
tions confirmed conclusions from a similar exercise
(Armstrong et al 1989) showing that, when 2 variables are
correlated, errors in one can affect both regression coeffi-
cients, and that the effect on the regression coefficient of
the other variable can be in either direction. When the 2

variables are measured with error and the errors are corre-
lated, this cross contamination can be particularly pro-
nounced. The authors adopted a simplified model for
these calculations, and they reasonably argue that, even if
this model is imperfect, the results give insight into the
likely major consequences of exposure measurement
errors.

Given the recognition that the relationship between
observed ambient pollution and mortality is a biased esti-
mate (usually underestimate) of the relationship between
personal exposure and mortality, it becomes important to
know which exposure-mortality relationship is useful for a
specified purpose. Section 1 includes a discussion of this
question. Because pollutant-level regulations are pertinent
to ambient exposures, there is a prima facie argument that
it is the (uncorrected) relationship between ambient expo-
sure and mortality that is relevant for regulation. In this
case, however, the distinction between measured and true
ambient exposure, if clearly defined, could be important.
The relationship between personal exposure and mortality
remains important from a scientific and public health per-
spective, but it is less relevant to regulators. Specific inter-
pretation of this relationship, however, raises questions
discussed in the NMMAPS Part 1 report about the relative
contribution to total exposure and toxicity of inhaled par-
ticles of those originating from ambient air and from
indoor sources. Unfortunately, data that might be useful to
answer these questions do not exist.

The development of the error framework, which appears
sound, provides insight into the likely magnitude of effects
of error, which overall is less than would be anticipated if
a substantial component of the error was not of the
Berkson type. This discussion also provides a statistical
motivation for a method to correct estimates of pollution-
mortality relationships for bias using data from small per-
sonal exposure studies with both personal and ambient
exposure measurements.

An important consideration to drawing conclusions
from this theoretical evaluation of effects of errors for
actual ecologic time-series studies is the paucity of real-
world data to examine the extent of errors and correlations
between the variables and their errors (including cross-
correlations). Complete reassurance that errors in meas-
uring exposures could not have caused spurious associa-
tions (or more generally have led to bias toward the null)
will have to await the collection of more exposure data. We
agree with the conclusion of the authors that, for bias away
from the null to be large, there would need to be high cor-
relation between the true exposure and confounding vari-
ables, or between errors in these. We suggest that an
additional theoretically possible cause of such bias is
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substantial correlation between errors of measurement of
exposure and other risk factors for death.

Section 2

Section 2 develops the framework established in section
1 by applying a form of the regression calibration bias-
reduction method to situations where the information
available on the relationship between the true and
observed exposures has a hierarchical or grouped struc-
ture. The hierarchical structure is the result of data pro-
vided from studies conducted in several different cities.
The data for each city included personal exposure meas-
urements made on several individuals on several days,
which are compared with the measured ambient exposure
levels for those cities on the same days. The hierarchy
comprises individual persons within cities and cities
within the totality of the data set, allowing ambient-to-per-
sonal regression calibration slopes to be calculated for
each city. To estimate the regression calibration slope for a
new city, some sort of average of the city-specific slopes is
needed. An appropriate statistical model should reflect
uncertainty in the estimate of the calibration line for each
city and also variation in calibration slopes between cities.

Section 2 uses a Bayesian modeling approach and the
computational method called Markov chain Monte Carlo
(MCMC). The Bayesian MCMC method is well established
and has been used to address other regression problems
with measurement error (Richardson and Gilks 1993), but
its application to ecologic time-series studies with meas-
urement error is new. An advantage of this approach is that
it can incorporate complexities into the modeling that
would cause problems in other methods. Thus, the log-
linear Poisson regression model for time series could be
linked to the hierarchical validity data without the need
for simplifying assumptions that might be inappropriate.

Results from Bayesian analyses are in a different form
than those from more familiar methods. For example, in
the Bayesian analysis, the posterior mean and 95% poste-
rior support intervals correspond to the more familiar
point estimate of effect (such as relative risk) and 95% CI.
This section also refers to the posterior interquartile range
(IQR), which is roughly equivalent to a 50% CI.

As an example of the proposed method, time-series data
from Baltimore are used to make a measurement error
corrected estimate of change in mortality per 10 �g/m3.
Information on the relationship between ambient expo-
sures and average personal exposure measurements was
obtained from personal exposure studies in 5 cities. The
average calibration slope (change in personal exposure per
unit change in ambient exposure) across these 5 cities was
estimated as 0.54 (compared with 0.60 found in Riverside,

California, in section 1). However, individual city slopes
varied among cities from 0.33 to 0.72, which is more than
can be explained by chance. The posterior mean increment
in mortality per 10 �g/m3 ambient exposure was 0.9%
(IQR, 0.67% to 1.12%). The corresponding figures for
increment in mortality per 10 �g/m3 personal exposure,
using the information from the calibration slopes, were
1.44% (IQR, 0.94% to 1.88%).

For comparison, the simple form of regression calibra-
tion described in section 1 was also used. The results of
the regression calibration were similar to those from the
Bayesian MCMC hierarchical model, but since the simple
estimate did not reflect uncertainty in the calibration
slope, the 50% CI was somewhat narrower than the IQR.
Some analyses of sensitivity of conclusions to model
assumptions were made, which were broadly reassuring
that specific assumptions were not critical.

The method described and illustrated in section 2
reflects the complexity of the context more fully than alter-
native methods, and it is flexible enough to extend rela-
tively easily to incorporate details of data structures that
may differ somewhat from those considered in the section.
These strengths come at the cost of complexity in analysis
and model assessment. Using the data on which the
methods were illustrated, the simple and more complex
methods gave similar results, but this may not always be
so. In future considerations of exposure measurement
error, methods of intermediate complexity may be worth
considering in addition to the extremes of simplicity and
sophistication described in this section.

CONCLUSIONS

Sections 1 and 2 advance our understanding of the
effects of error in measuring air pollution in time-series
studies. They present a theoretical model to test systemat-
ically what effect the relationship between personal expo-
sures and ambient exposures might have on the observed
increase in mortality associated with PM10. These sections
identify the likely direction of bias due to typical error
(toward the null) and offer practical methods for its reduc-
tion. Lack of available information on the magnitude of
measurement error means that the use of these methods to
obtain estimates of the magnitude of bias (currently esti-
mated to reduce the magnitude of the association by about
half) is limited. They should be considered illustrative and
tentatively suggestive of typical values rather than defini-
tive. Studies relying on poor measures of ambient concen-
tration will experience greater bias than those with good
ambient measurements. Theoretical considerations of
errors of measurement in multipollutant models and in
confounding variables suggest that only highly correlated
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variables and/or errors would produce substantial bias dif-
ferent from that described above. General absence of meas-
ured data on these errors and correlations, however,
precludes confirmation that such conditions are not
present. More data are being obtained in HEI, EPA, and
other studies that should lead to more confident and spe-
cific conclusions.

MORTALITY DISPLACEMENT

SCIENTIFIC BACKGROUND

Mortality displacement, also referred to as harvesting,
refers to premature death in the frailest members of a pop-
ulation—individuals who are near death die only slightly
sooner than they would otherwise. If mortality displace-
ment occurs, other, nonfatal, health consequences would
be expected among less frail individuals. One might
expect an acute increase in deaths among the frailest
people in the population to signal a need for serious inter-
vention to prevent further mortality and morbidity.

This idea of mortality displacement received empirical
support from the observation that, for a period following
the London Fog episode of very high air pollution levels in
1952, fewer deaths were observed than would have nor-
mally been expected. This was presumably due to the
depletion during the pollution episode of a pool of suscep-
tible individuals who would have died only a few days
later if not for the London Fog. Recently, McMichael and
colleagues (1998) and Lipfert and Wyzga (1995) have
stated that the excess daily mortality measured in the time-
series studies might be only, or largely, due to such short-
term mortality displacement.

Drs L Cifuentes and LB Lave (Carnegie-Mellon Univer-
sity, Pittsburgh PA, unpublished data, 1996) demonstrated
short-term mortality displacement by estimating expected
deaths in Philadelphia across a 6-year period and then
comparing this estimate to actual deaths that occurred
during episodes of elevated total suspended particles
(TSP) that lasted 3 days. The authors found that, at the
beginning of the episode, the number of deaths was higher
than expected when they compared it with the estimated
average death rate. At the end of the episode, the authors
found that the number of deaths was lower than expected.
The excess deaths found were in addition to the excess
deaths estimated by the Poisson regression model. The
authors suggested the observed short-term excess of death
at the beginning of the TSP episode was due to exposure to
elevated TSP. Dr Claudia Spix (unpublished observations,
1998) has also developed modeling methods to consider

how short-term mortality displacement might affect esti-
mates of air pollution and mortality.

In this report, mortality displacement as described by
Zeger and colleagues in section 3 involves 3 steps. First,
the investigators proposed and investigated a 2-compart-
ment model for mortality displacement, concluding that
mortality displacement will only reflect itself on short-
term time scales. Second, they evaluated a time-series
model of the mortality–air pollution association that esti-
mates the pollution relative risk at different time scales
(year, season, month, day), referred to as the frequency
domain log-linear regression approach. Taking the above 2
steps into account, the investigators propose a mortality
displacement–resistant estimator that “sets aside” the
short-term association that is subject to the influence of
mortality displacement.

If short-term mortality displacement were the only
reason for the association seen between mortality and pol-
lution, effect estimates for long time periods (eg, a year)
would show no effect. Therefore the authors conclude that,
by examining the regressions using longer time periods,
the pollution mortality association can be estimated
without being biased by short-term mortality displace-
ment. Schwartz (section 4) uses methods conceptually
similar to those of Zeger and colleagues and applies them
to studying total, chronic obstructive pulmonary disease
(COPD), pneumonia, and ischemic heart disease (IHD)
mortality in Boston.

TECHNICAL EVALUATION

In the analysis of the association between mortality and
PM in section 3, the fact that mortality displacement may
be occurring is not the main issue. Rather, the authors pro-
pose a method for estimating the air pollution mortality
association that is insensitive to any mortality displace-
ment effect.

The investigators first examine consequences of mor-
tality displacement using simulation techniques similar to
the ones used by previous investigators, assuming that
individuals move from a healthy state to a frail (vulnerable)
state, and are then susceptible to death. They demonstrate
via computer simulations that mortality displacement
occurs in the short term, by varying the average amount of
time spent (between 3, 30, and 300 days) in the frail state,
called the mean residence time (MRT). The simulations
showed that if mortality displacement is the only source of
the mortality–air pollution association, this association is
near the null value at twice the MRT. This was true for each
of the scenarios (3, 30, and 300 days).
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The next step was to look at the association between air
pollution and mortality using different time scales; that is,
the data are expressed across year, season, month, week,
and day. Regression techniques are applied to produce a
regression coefficient that quantifies the association be-
tween mortality and pollution for a particular time scale.

If only mortality displacement accounts for the associa-
tion between air pollution and mortality, then at very low
frequencies (time scales varying over a long period, such as
a year), no mortality displacement effect will result. At very
high frequencies (time scales varying over short periods),
such as a day, complete mortality displacement effect
would be the result. Somewhere in between, a mortality
displacement–resistant estimator can be determined. This
estimator will then ignore all coefficients that correspond
to periods shorter than twice the MRT in the frail group.

Data from Philadelphia are used in an example to assess
the association between air pollution and mortality that is
independent of mortality displacement. Figure 3, section
3, gives the estimates of mortality log relative risk associ-
ated with exposure to TSP over time. The pattern is dif-
ferent from that expected if mortality displacement is the
sole explanation of this association. The figure shows that
at low frequency (that is, long time periods, such as a year)
there is an association between exposure to TSP and mor-
tality that is different from 0 and is positive. At high fre-
quencies (or shorter time periods, such as a day) there is a
decrease in the association that comes close to 0. This is
exactly the opposite of what is expected if mortality dis-
placement is the only explanation of the association.

Section 4 similarly examines data from Boston over dif-
ferent time scales (or frequencies) for the association
between air pollution levels and death rate at each of the
different time scales. Here the author expected to find asso-
ciations partly reflecting the effects of mortality displace-
ment at the shorter time scales. Associations are also found
at the longer time scales, however, which would suggest
that death is being advanced by more than a few days.

The investigator separated the time-series data of daily
deaths, air pollution, and weather into components of dif-
ferent wavelengths, or frequencies. These components are
the low-frequency or long time-scale component, which
will account for seasonal and annual trends in mortality;
the moderate frequencies or mid-range time-scale compo-
nent, which correspond to a time scale of a couple of
months; and the high-frequency or short time-scale com-
ponent (days), which is proposed to demonstrate mortality
displacement.

Having separated out the mortality displacement and
season effects, associations between air pollution and mor-
tality that are not biased from these other factors can be

investigated. The midscale range is defined at different
time scales (frequency ranges) of 15, 30, 45, and 60 days.
Associations between air pollution and mortality of dif-
ferent subgroups (COPD, pneumonia, and IHD) are investi-
gated to establish time frames of impact—that is, where the
largest impact on the association is seen. For COPD it
seems to be a matter of days; for pneumonia and IHD it
appears that exposures on the order of weeks or months
have a significant impact.

One potential concern with interpreting the effects at
the longer mortality displacement–resistant time scales is
determining whether they are confounded by long-term
time trends in the data. It is clear that the choice of fre-
quencies removed from the data can have a substantial
impact on estimates of effect (Cakmak et al 1998). If such
confounding is present, then it is difficult to make conclu-
sions about the implications of observed large effects at
these longer time scales on the role of mortality displace-
ment. In selecting the time scales of interest, one must
somehow choose those that resist the effect of mortality
displacement while still adequately controlling for effects
of long-term temporal trends or cycles. We need to have
assurance that longer-term time trends or cycles are ade-
quately controlled before the findings of these mortality
displacement sections can be taken as definitively sup-
porting the intended interpretation.

Other issues that complicate interpretation of the
observed estimates of effect at the larger time scales are
those of cumulative effects, chronic effects, and lagged
effects. Cumulative and chronic effects would require a
certain pattern or period of exposure before they occur.
Cumulative effects require that the condition worsens or is
more likely to occur with each successive exposure.
Chronic effects are similar to cumulative effects, but the
term is more regularly used in association with an illness
or disease that is simply long term regardless of exposure
duration. A lagged effect in this context refers to an acute
effect that follows the exposure by a day or more. The
implications of the observed effects at the longer time
scales for cumulative, chronic, and lagged effects,
assuming these effects are not due to confounding, are not
clear. Presumably there is little implication for lagged
effects, since one can still address issues of lags using the
longer time scales, as the investigators did. What is not
clear is whether effects at the longer time scales imply
something about cumulative or chronic effects. As more
experience is gained with the approaches taken by the
investigators, more insight into these issues may be gained
as well.

The pollutant that might be associated with the short-
term displacement is an additional consideration when



81

Health Review Committee

interpreting the findings. PM was the only component of
the air pollution mix that was assessed in both sections on
mortality displacement, and it has not been determined
whether the short-term displacement reflects an effect of
PM, an effect of another closely correlated air pollutant, or
a more general effect of the air pollution mix.

Although sections 3 and 4 take conceptually similar
approaches to addressing the issue of mortality displace-
ment, there are some differences. The principal difference
is estimating effects over a continuous time scale versus
estimating effects at a few discrete time scales. One advan-
tage to the continuous time scale is the ability to display
estimates over the entire frequency spectrum. One disad-
vantage perhaps is that the procedure seems less trans-
parent to those less expert in the statistical methods.

A second difference between the 2 sections is the focus
on total mortality for Philadelphia (section 3), whereas
cause-of-death categories were also evaluated for Boston
(section 4). For Boston, effects were observed at the shorter
time scales for COPD, but at the longer time scales for
pneumonia and IHD. An attempt was made to interpret
these findings, but questions regarding the interpretation
remain. It could be argued that it would be more plausible
for pneumonia and cardiovascular deaths, rather than
deaths due to COPD, to exhibit the effects at short time
scales. Here, as in the interpretation of the effect estimates
at long time scales, however, it becomes easy to confuse
cumulative, chronic, and lagged effects. Regardless, it will
be interesting to see whether the patterns of effect at the
various time scales by cause of death are consistent in
Boston and Philadelphia, as has been proposed.

CONCLUSIONS

The investigators’ examination of the role of mortality
displacement using 2 different but related statistical
methods is an original approach to evaluating whether
more than a short-term displacement of mortality is occur-
ring. The approach is convincing with a few qualifications.
First, because PM was the only component of the air pollu-
tion mix that was assessed, it has not been determined
whether this phenomenon is reflecting an effect of PM, an
effect of another closely correlated air pollutant, or a more
general effect of the air pollution mix. Second, given our
lack of experience with these methods, it is also possible
that use of time scales longer than a few days required by
the techniques reintroduces bias from long-term time
trends that influences the estimates of effects beyond a few
days. Third, the approach does not allow a simultaneous
assessment of the relative impact on mortality of both
short-term displacement, if one is present, and longer-term
effects.

As the authors have proposed, we need a more formal
comparison of the methods described in the 2 sections,
both to each other and to other approaches, to further our
understanding of this issue. Given that this is the first
application of this approach, replication of the findings in
other settings is also needed; the general similarities in the
findings from Philadelphia and Boston suggest that the
findings could be reproduced in other settings.

NMMAPS METHODS

SCIENTIFIC BACKGROUND

Many components of ambient air pollution often derive
from the same (combustion) sources, and therefore are at
least moderately correlated over time in most urban areas.
For this reason, epidemiologic studies of daily mortality in
single cities are limited in their ability to estimate the
independent effects of these individual components
(Samet et al 1997). NMMAPS is based on the assumption
that a multisite study that spans geographic areas differing
with respect to the concentrations of the various compo-
nents of ambient air pollution will provide better estimates
of the independent and combined effects of each compo-
nent than will combining several single-site studies after
studies are completed. In addition, a multicity study offers
the opportunity to explore characteristics of the environ-
ment or the population that might modify the effect of air
pollution on daily mortality. Although these insights did
not originate with NMMAPS, the investigators have
applied them in new ways that are intended to improve on
earlier approaches.

Consistency of effects over many different geographic
areas can be useful in establishing evidence of an associa-
tion, after proper adjustments have been made to account
for differences in pollution profiles and population char-
acteristics. One approach to examining results from sev-
eral cities, combined in one analysis, has been the meta-
analytic approach, which is a statistical method that pro-
vides a summary statistic of association using findings
from available studies.

NMMAPS also combines results from individual cities.
The NMMAPS approach differs from the previously used
meta-analytic approach, however, in 2 potentially impor-
tant ways. First, NMMAPS is based on a national air
monitoring network, the Aerometric Information Retriev-
al System (AIRS) database, maintained by the EPA.
NMMAPS sites were selected from this sampling frame in
an explicit and prespecified fashion, as contrasted to the
approach used in previous meta-analyses where sites were
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not selected in a specified way. This sampling method alle-
viates concerns that selection or publication bias (the like-
lihood that studies with positive findings will be
published more frequently than negative studies) will
influence the reporting of NMMAPS findings in the scien-
tific literature.

Second, in NMMAPS the multisite data are combined
using a 2-stage Bayesian hierarchical modeling approach
rather than the more informal meta-analytic methods
applied previously. The first stage uses a standardized
approach to estimate city-specific relative risks using log-
linear models, employing adaptive smoothing techniques
to adjust for time trends and potential confounders. The
city-specific models build on extensive prior experience
gained in the Particle Epidemiology Evaluation Project
(PEEP) study concerning how best to control for con-
founding factors such as weather, day of the week, season-
ality, and long-term trends in mortality (Samet et al 1997).

Semiparametric smoothing techniques are used sepa-
rately by city to adjust for fluctuations in possible effects
on mortality from weather, day of the week, age-specific
long-term trends, and other factors in a standardized
fashion. The advantage of these semiparametric methods
of adjustment is that they avoid the need to make modeling
assumptions such as linearity, and they are therefore a
good choice to use when adjusting for factors such as sea-
sonality and weather, where the exact shape of the expo-
sure-response relationship is unknown. The application of
these methods allows the data from each city to be used in
a flexible and adaptive way best suited to that particular
location.

The second stage of the analysis combines the pollution-
mortality regression coefficients across the cities using a
Bayesian hierarchical modeling approach. This model pro-
vides an overall combined estimate of the effect and a uni-
fied method for examining whether other city-specific
factors, including sociodemographic and meteorologic
variables, may help explain heterogeneity of pollutant
effects on mortality across cities. In epidemiologic terms,
variables found to explain variability in the city-specific
regression coefficients are effect modifiers. This hierar-
chical approach also takes into account the heterogeneity
of effects across cities in computing the overall summary
measure of effect.

TECHNICAL EVALUATION

Section 5 develops the statistical model and method-
ologic framework to be used to model the relationship
between pollutants and mortality and to combine evidence
across multiple cities. The authors use a 2-stage Bayesian
hierarchical modeling approach that provides a flexible

and comprehensive modeling strategy well suited to com-
bining effects from multiple cities. Flexibility is built in to
the Poisson log-linear modeling approach used for city-
specific analyses in the first stage through the use of semi-
parametric generalized additive modeling that incorpo-
rates adaptive smoothing techniques. This smoothing
approach is adaptive in the sense that it allows the rela-
tionship between mortality and key covariates that fluc-
tuate over time, such as daily temperature, to vary in
complex ways from city to city. The extent of smoothing is
controlled by the degrees of freedom (df) of the smoother,
and sensitivity analyses are used to explore the effect of
increasing or decreasing the amount of smoothing
allowed.

The goal of the first stage of the modeling is to provide
an automated approach that allows a sufficiently flexible
model to be fit to data from each individual city. The
second-stage Bayesian hierarchical model provides a nat-
ural approach to combining results across cities to provide
an overall estimate of effect. It also provides a method to
explore factors (effect modifiers) that may in part explain
city-to-city heterogeneity, that is, dissimilar associations
between air pollution and mortality by city. Finally, the
Bayesian approach also provides posterior estimates of
effect for individual cities that borrow strength from the
entire set of cities. That is, the posterior mean of the esti-
mated effect for each city is a shrinkage estimate that takes
into account the precision with which the regression coef-
ficient is estimated for that city, and shrinks the estimate
toward the overall combined mean. The amount of
shrinkage is less for cities with precisely estimated regres-
sion coefficients and more for cities with poorly estimated
coefficients. This approach may improve estimates of
effects of pollutants for individual cities, particularly
where the effects of pollution on mortality are poorly esti-
mated because of small numbers of deaths. Proposed
models as applied in this section do not incorporate sub-
stantial prior opinion about parameters of interest, so that
results are not influenced to any substantial degree by pos-
sibly subjective prior information.

The general approach for modeling mortality over time
within each city is well thought out. The model attempts
to control for long-term mortality trends as well as short-
term trends due, for example, to phenomena such as influ-
enza epidemics. Temperature variables (temperature and
dew point on the current day and average for the previous
3 days) and day of the week are also controlled for in the
model. The model stratifies on 3 age groups (<65 years,
65–75, >75), and includes interactions of age with some
other terms in the model (eg, short-term mortality trends
are allowed to be age-specific). As mentioned, smoothing
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techniques were used to model the long-term and short-
term fluctuations in mortality, as well as the effects of tem-
perature and dew point, making the models semipara-
metric in that sense.

Three separate analyses were run for each pollutant,
examining effects of pollutant levels on the current day
(lag 0), prior day (lag 1), and 2 days prior to death (lag 2).
Unfortunately, because PM was measured only on every
sixth day in some cities, it was not possible to fit models
incorporating the effects of more than one lag (referred to
as distributed lag models). The models were fit assuming
independence of errors over time. Examination of the auto-
correlation function of the standardized residuals indi-
cated that correlations were very close to 0, suggesting that
this was a reasonable assumption, as well as providing
some reassurance that seasonality and short-term time
trends were adequately controlled for in the model.

The second-stage model describes between-city varia-
tion of the true underlying city-specific effects in terms of
selected city-specific covariates. It also provides a com-
bined estimate of the overall effect of each pollutant
(univariate model) or pair of pollutants (bivariate model).
Several variants of the second-stage model are described,
including a baseline model that assumes that the true city-
specific rates are uncorrelated and 2 versions of a spatial
model, which allow the true city-specific rates to be corre-
lated geographically using 2 different distance measures in
the correlation function. These three 2-stage models in
combination provide sufficiently broad flexibility in the
approach used to examine and describe city-to-city hetero-
geneity.

The sensitivity analyses (section 5, Table 4) are reas-
suring in that they indicate robustness of the findings to the
choice of lag exposure time, prior distributions of parame-
ters in the Bayesian framework, and choice of second-stage
model (baseline univariate, baseline bivariate, or spatial).
Sensitivity analyses were done (results not shown) where
the df (smoothness) of the nonparametric functions mod-
eling time, weather, and seasonality were varied over a
fourfold range. Assuming that the default df are in the gen-
erally optimal region, the finding that the degree of
smoothing had little effect on the regression coefficient of
pollutants of primary interest was reassuring.

Fitting sufficiently general models that adequately con-
trol confounders to city-specific data and finding a consis-
tent, adjusted effect across cities while exploring the
robustness of results and fit of the model using sensitivity
analyses and other methods are important for elucidating
the associations. One potential issue with the Bayesian
hierarchical approach is its perceived complexity among
those not familiar with this relatively new application of

this methodology. In this sense, comparison of the results
obtained from this approach with simpler approaches
such as random effects meta-analysis (DerSimonian and
Laird 1986) would be of interest. Another potential limita-
tion of the Bayesian hierarchical approach is the possible
dependence of reported results on the prior distribution.
The NMMAPS analysis, however, is based on no-informa-
tion or low-information prior distributions, and their
influence should be minimal.

CONCLUSIONS

The Bayesian hierarchical approach taken to multicity
modeling is a flexible and comprehensive modeling
approach for estimating effects of air pollutants in mul-
tiple cities, combining their effects across cities, and
exploring factors leading to heterogeneity among cities.

Section 5 lays out a general methodology for carrying
out multicity analyses. The example provided in the sec-
tion illustrates the methodology, but is not intended to be a
comprehensive analysis of the effects of air pollution and
mortality. NMMAPS Part II will further explore factors that
might explain heterogeneity of the pollutant-mortality
association across cities. Section 5 also lays a foundation
for addressing other important issues including (1) pos-
sible nonlinearity of the exposure-mortality relationship,
(2) variation in the exposure relationships by season of the
year (pollutant by season interactions), and (3) possible
interactions of age with other exposure variables such as
temperature or dew point.
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